No Arabic abstract
We use lattice Boltzmann simulations to study the effect of shear on the phase ordering of a two-dimensional binary fluid. The shear is imposed by generalising the lattice Boltzmann algorithm to include Lees-Edwards boundary conditions. We show how the interplay between the ordering effects of the spinodal decomposition and the disordering tendencies of the shear, which depends on the shear rate and the fluid viscosity, can lead to a state of dynamic equilibrium where domains are continually broken up and re-formed.
Phase separation of binary fluids quenched by contact with cold external walls is considered. Navier-Stokes, convection-diffusion, and energy equations are solved by lattice Boltzmann method coupled with finite-difference schemes. At high viscosity, different morphologies are observed by varying the thermal diffusivity. In the range of thermal diffusivities with domains growing parallel to the walls, temperature and phase separation fronts propagate towards the inner of the system with power-law behavior. At low viscosity hydrodynamics favors rounded shapes, and complex patterns with different lengthscales appear. Off-symmetrical systems behave similarly but with more ordered configurations.
We study liquid-vapor phase separation under shear via the Shan-Chen lattice Boltzmann model. Besides the rheological characteristics, we analyze the Kelvin-Helmholtz(K-H) instability resulting from the tangential velocity difference of the fluids on two sides of the interface. We discuss also the growth behavior of droplets. The domains being close to the walls are lamellar-ordered, where the hydrodynamic effects dominate. The patterns in the bulk of the system are nearly isotropic, where the domain growth results mainly from the diffusion mechanism. Both the interfacial tension and the K-H instability make the liquid-bands near the walls tend to rupture. When the shear rate increases, the inequivalence of evaporation in the upstream and coagulation in the downstream of the flow as well as the role of surface tension makes the droplets elongate obliquely. Stronger convection makes easier the transferring of material particles so that droplets become larger.
The two-body (pair) contribution to the entropy of two-dimensional Yukawa systems is calculated and analyzed. It is demonstrated that in the vicinity of the fluid-solid (freezing) phase transition the pair entropy exhibits an abrupt jump in a narrow temperature range and this can be used to identify the freezing point. Relations to the full excess entropy and some existing freezing indicators are briefly discussed.
We report that binary dispersions of like-charged colloidal particles with large charge asymmetry but similar size exhibit phase separation into crystal and fluid phases under very low salt conditions. This is unexpected because the effective colloid-colloid pair interactions are accurately described by a Yukawa model which is stable to demixing. We show that colloid-ion interactions provide an energetic driving force for phase separation, which is initiated by crystallization of one species.
We study numerically the yielding transition of a two dimensional model glass subjected to athermal quasi-static cyclic shear deformation, with the aim of investigating the effect on the yielding behaviour of the degree of annealing, which in turn depends on the preparation protocol. We find two distinct regimes of annealing separated by a threshold energy. Poorly annealed glasses progressively evolve towards the threshold energy as the strain amplitude is increased towards the yielding value. Well annealed glasses with initial energies below the threshold energy exhibit stable behaviour, with negligible change in energy with increasing strain amplitude, till they yield. Discontinuities in energy and stress at yielding increase with the degree of annealing, consistently with recent results found in three dimensions. We observe significant structural change with strain amplitude that closely mirrors the changes in energy and stresses. We investigate groups of particles that are involved in plastic rearrangements. We analyse the distributions of avalanche sizes, of clusters of connected rearranging particles, and related quantities, employing finite size scaling analysis. We verify previously investigated relations between exponents characterising these distributions, and a newly proposed relation between exponents describing avalanche and cluster size distributions.