Directed paths on hierarchical lattices with random sign weights


Abstract in English

We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability $p$. Such path sums $J$ have been used to model interference effects by hopping electrons in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments $<J^n>$ always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($nto 0$) to obtain $<ln J>$ for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic structures that propagate as a function of $p$. Finally, we derive the exact probability distribution for path sums $J$ up to length L=64 for all sign probabilities.

Download