Neutron Scattering Studies of Spin Fluctuations in High Temperature Superconductors


Abstract in English

Neutron scattering can provide detailed information about the energy and momentum dependence of the magnetic dynamics of materials provided sufficiently large single crystals are available. This requirement has limited the number of rare earth high temperature superconducting materials that have been studied in any detail. However, improvements in crystal growth in recent years has resulted in considerable progress in our understanding of the behaviour of the magnetism of the CuO planes in both the superconducting and normal state. This review will focus primarily on the spin fluctuations in La_{2-x}Sr_{x}CuO_{4} and YBa_{2}Cu_{3}O_{7-x} since these are the two systems for which the most detailed results are available. Although gaps in our understanding remain, there is now a consistent picture of on the spin fluctuation spectra in both systems as well as the changes induced by the superconducting transition. For both La_{2-x}Sr_{x}CuO_{4} and underdoped YBa_{2}Cu_{3}O_{7-x} the normal state response is characterised by incommensurate magnetic fluctuations. The low energy excitations are suppressed by the superconducting transition with a corresponding enhancement in the response at higher energies. For YBa_{2}Cu_{3}O_{7-x} the superconducting state is accompanied by the rapid development of a commensurate resonant response whose energy varies with T_{c}. In underdoped samples this resonance persists above T_{c}.

Download