Do you want to publish a course? Click here

Hidden Integrability of a Kondo Impurity in an Unconventional Host

59   0   0.0 ( 0 )
 Added by Valery Rupasov
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a spin-1/2 Kondo impurity coupled to an unconventional host in which the density of band states vanishes either precisely at (``gapless systems) or on some interval around the Fermi level (``gappedsystems). Despite an essentially nonlinear band dispersion, the system is proven to exhibit hidden integrability and is diagonalized exactly by the Bethe ansatz.



rate research

Read More

Using the numerical renormalization group method, the effect due to a Kondo impurity in an $s$-wave superconductor is examined at finite temperature ($T$). The $T$-behaviors of the spectral function and the magnetic moment at the impurity site are calculated. At $T$=0, the spin due to the impurity is in singlet state when the ratio between the Kondo temperature $T_k$ and the superconducting gap $Delta$ is larger than 0.26. Otherwise, the spin of the impurity is in a doublet state. We show that the separation of the double Yu-Shiba-Rusinov peaks in the spectral function shrinks as $T$ increases if $T_k/Delta<0.26$ while it is expanding if $T_k/Delta>0.26$ and $Delta$ remains to be a constant. These features could be measured by experiments and thus provide a unique way to determine whether the spin of the single Kondo impurity is in singlet or doublet state at zero temperature.
Quantum impurity models are prevalent throughout many body physics, providing some prime examples of strongly correlated systems. Aside from being of great interest in themselves they can provide deep insight into the effects of strong correlations in general. The classic example is the Kondo model wherein a magnetic impurity is screened at low energies by a non interacting metallic bath. Here we consider a magnetic impurity coupled to a quantum wire with pairing interaction which dynamically generates a mass gap. Using Bethe Ansatz we solve the system exactly finding that it exhibits both screened and unscreened phases for an antiferromagnetic impurity. We determine the ground state density of states and magnetization in both phases as well as the excitations. In contrast to the well studied case of magnetic impurities in superconductors we find that there are no intragap bound states in the spectrum. The phase transition is not associated to a level crossing but with quantum fluctuations.
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that emerge from the uranium f states in URu2Si2. We find that as the temperature is lowered, partial screening of the f electrons spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states.
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5$f$ electrons and the heavy actinides that have localized 5$f$ electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantum Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal, which must also include the interactions between Pu 5$f$ electrons on different Pu atoms. For the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. Furthermore, we show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu 5$f$-ligand hybridization at the surface.
The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling this many-body state is central for its eventual understanding. Here, we examine how proximity effects may change this phenomenon, by investigating the effects of an additional metallic layer on the top of a Kondo-lattice, and allowing for pairing in the former. We analyze a bilayer Kondo Lattice Model with an on-site Hubbard interaction, $-U$, on the additional layer, using a mean-field approach. For $U=0$, we notice a drastic change in the density-of-states due to multiple-orbital singlet resonating combinations. It destroys the well-known Kondo insulator at half filling, leading to a metallic ground state, which, in turn, enhances antiferromagnetism through the polarization of the conduction electrons. For $U eq 0$, a superconducting Kondo state sets in at zero temperature, with the occurrence of unconventional pairing amplitudes involving $f$-electrons. We establish that this remarkable feature is only possible due to the proximity effects of the additional layer. At finite temperatures we find that the critical superconducting temperature, $T_c$, decreases with the interlayer hybridization. We have also established that a zero temperature superconducting amplitude tracks $T_c$, which reminisces the BCS proportionality between the superconducting gap and $T_c$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا