Do you want to publish a course? Click here

Dynamics of dense Polyelectrolyte Solutions

167   0   0.0 ( 0 )
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a system of dense polyelectrolytes in solution. The Langevin dynamics of the system with linearized hydrodynamics is formulated in the functional integral formalism and a transformation made to collective coordinates. Within a dynamical Random Phase Approximation (RPA) integration over the counter- and salt ions produces the Debye-Huckel-like screening of the Coulomb interactions with dependence on the frequency only as part of a more complicated coupling structure. We investigate the dynamics of the structure factor as well as the collective diffusion coefficient and comment upon the viscosity of the whole system of polymers with counterions and fluid in the simplest approximation. The coupling of the various components of the system produces nontrivial diffusive behavior. We draw conclusions about the relationship of the three length scales in the present system, i.e. the static screening length, the hydrodynamic screening length and the Debye length.



rate research

Read More

We analyse the dynamics of different routes to collapse of a constrained polyelectrolyte gel in contact with an ionic bath. The evolution of the gel is described by a model that incorporates non-linear elasticity, Stefan-Maxwell diffusion and interfacial gradient free energy to account for phase separation of the gel. A bifurcation analysis of the homogeneous equilibrium states reveals three solution branches at low ion concentrations in the bath, giving way to only one above a critical ion concentration. We present numerical solutions that capture both the spatial heterogeneity and the multiple time-scales involved in the process of collapse. These solutions are complemented by two analytical studies. Firstly, a phase-plane analysis that reveals the existence of a depletion front for the transition from the highly swollen to the new collapsed equilibrium state. This depletion front is initiated after the fast ionic diffusion has set the initial condition for this time regime. Secondly, we perform a linear stability analysis about the homogeneous states that show that for a range of ion concentrations in the bath, spinodal decomposition of the swollen state gives rise to localized solvent-rich(poor) and, due to the electro-neutrality condition, ion-poor(rich) phases that coarsen on the route to collapse. This dynamics of a collapsing polyelectrolyte gel has not been described before.
The transport of polyelectrolytes confined by oppositely charged surfaces and driven by a constant electric field is of interest in studies of DNA separation according to size. Using molecular dynamics simulations that include surface polarization effect, we find that the mobilities of the polyelectrolytes and their counterions change non-monotonically with the confinement surface charge density. For an optimum value of the confinement charge density, efficient separation of polyelectrolytes can be achieved over a wide range of polyelectrolyte charge due to the differential friction imparted by the oppositely charged confinement on the polyelectrolyte chains. Furthermore, by altering the placement of the charged confinement counterions, enhanced polyelectrolyte separation can be achieved by utilizing surface polarization effect due to dielectric mismatch between the media inside and outside the confinement.
60 - M. Watzlawek 1998
The core-core structure factor of dense star polymer solutions in a good solvent is shown theoretically to exhibit an unusual behaviour above the overlap concentration. Unlike usual liquids, these solutions display a structure factor whose first peak decreases by increasing density while the second peak grows. The scenario repeats itself with the subsequent peaks as the density is further enhanced. For low enough arm numbers $f$ ($f leq 32$), various different considerations lead to the conclusion that the system remains fluid at all concentrations.
We present a simple model to study micellization of amphiphiles condensed on a rodlike polyion. Although the mean field theory leads to a first order micellization transition for sufficiently strong hydrophobic interactions, the simulations show that no such thermodynamic phase transition exists. Instead, the correlations between the condensed amphiphiles can result in a structure formation very similar to micelles.
Angular correlations in dense solutions and melts of flexible polymer chains are investigated with respect to the distance $r$ between the bonds by comparing quantitative predictions of perturbation calculations with numerical data obtained by Monte Carlo simulation of the bond-fluctuation model. We consider both monodisperse systems and grand-canonical (Flory-distributed) equilibrium polymers. Density effects are discussed as well as finite chain length corrections. The intrachain bond-bond correlation function $P(r)$ is shown to decay as $P(r) sim 1/r^3$ for $xi ll r ll r^*$ with $xi$ being the screening length of the density fluctuations and $r^* sim N^{1/3}$ a novel length scale increasing slowly with (mean) chain length $N$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا