Do you want to publish a course? Click here

Mobile anti-phase domains in lightly doped lanthanum cuprate

288   0   0.0 ( 0 )
 Added by P. Chris Hammel
 Publication date 1998
  fields Physics
and research's language is English
 Authors P. C. Hammel




Ask ChatGPT about the research

Light hole doping of lanthanum cuprate strongly suppresses the onset of antiferromagnetic (AF) order. Surprisingly, it simultaneously suppresses the extrapolated zero temperature sub-lattice magnetization. 139La NQR results in lightly Li-doped lanthanum cuprate have demonstrated that these effects are independent of the details of the mobility of the added holes. We propose a model in which doped holes phase separate into charged domain walls that surround ``anti-phase domains. These domains are mobile down to ~30 K where they either become pinned to the lattice or evaporate as their constituent holes become pinned to dopant impurities.



rate research

Read More

139La NMR and relaxation measurements have been performed on La{1.8-x}Eu{0.2}Sr{x}CuO{4} (x = 0.13 and 0.2) single crystals. The temperature dependence of the 139La NMR spectra in all the structural phases (HTT -> LTO -> LTT) reveals the non-vanishing tilt angle of the CuO6 octahedra in the HTT phase, opposed to the case of La{2-x}Sr{x}CuO{4} where the tilt angle disappears immediately above the transition. Since 139La relaxation data provide evidence of the thermodynamic critical fluctuations associated with the structural phase transitions, HTT -> LTO and LTO -> LTT, we conclude that the structural transitions in Eu-doped La{2-x}Sr{x}CuO{4} should be of the order-disorder type rather than of the displacive type observed in La{2-x}Sr{x}CuO{4}. The change of the nature of the structural transitions caused by doping Eu appears to be consistent with the LTO -> LTT transition that is absent in La{2-x}Sr{x}CuO{4}.
142 - A. M. Toader 2005
Spin correlations in the paramagnetic phase of lanthanum cuprate have been studied using polarized neutron scattering, with two important results. First, the temperature dependence of the characteristic energy scale of the fluctuations and the amplitude of the neutron structure factor are shown to be in quantitative agreement with the predictions of the quantum non-linear sigma model. Secondly, comparison of a high-temperature series expansion of the equal-time spin correlations with the diffuse neutron intensity provides definitive experimental evidence for ring exchange.
High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.
Inelastic neutron scattering (INS), electron spin (ESR) and nuclear magnetic resonance (NMR) measurements were employed to establish the origin of the strong magnetic signal in lightly hole-doped La_{1-x}Sr_xCoO_3, x=0.002. Both, INS and ESR low temperature spectra show intense excitations with large effective g-factors ~10-18. NMR data indicate the creation of extended magnetic clusters. From the Q-dependence of the INS magnetic intensity we conclude that the observed anomalies are caused by the formation of octahedrally shaped spin-state polarons comprising seven Co ions.
Sr3(Ru1-xMnx)2O7, in which 4d-Ru is substituted by the more localized 3d-Mn, is studied by x-ray dichroism and spin-resolved density functional theory. We find that Mn impurities do not exhibit the same 4+ valence of Ru, but act as 3+ acceptors; the extra eg electron occupies the in-plane 3dx2-y2 orbital instead of the expected out-of-plane 3d3z2-r2. We propose that the 3d-4d interplay, via the ligand oxygen orbitals, is responsible for this crystal-field level inversion and the materials transition to an antiferromagnetic, possibly orbitally-ordered, low-temperature state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا