Do you want to publish a course? Click here

The Bose-glass phase in twinned YBaCuO(123)

106   0   0.0 ( 0 )
 Added by Santiago A. Grigera
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using an extensive scaling analysis of the transport properties in twinned YBaCuO(123) crystals we have experimentally found the predicted change in the universality class of the Bose-glass to liquid transition when the magnetic field is applied at small angles away from the direction of the correlated defects. The new dynamical critical exponent is s=1.1 +/-0.2.



rate research

Read More

68 - Carsten Wengel 1998
Structural and transport properties of interacting localized flux lines in the Bose glass phase of irradiated superconductors are studied by means of Monte Carlo simulations near the matching field B_Phi, where the densities of vortices and columnar defects are equal. For a completely random columnar pin distribution in the xy-plane transverse to the magnetic field, our results show that the repulsive vortex interactions destroy the Mott insulator phase which was predicted to occur at B = B_Phi. On the other hand, for ratios of the penetration depth to average defect distance lambda/d <= 1, characteristic remnants of the Mott insulator singularities remain visible in experimentally accessible quantities as the magnetization, the bulk modulus, and the magnetization relaxation, when B is varied near B_Phi. For spatially more regular disorder, e.g., a nearly triangular defect distribution, we find that the Mott insulator phase can survive up to considerably large interaction range lambda/d, and may thus be observable in experiments.
Monte Carlo simulations of layered BSCCO samples are used to investigate the behavior of vortex matter at low fields, particularly in connection with the possible occurrence of a Bragg glass (BrG) phase at low density of columnar defects, a phenomenon characterized by the prevalence of short-range over long-range order. In this dislocation-free topological phase the translational order correlation function displays a power law decay. For magnetic induction $B=0.1$ kG the analysis of the data for the first Bragg peak of the planar structure factor, the hexatic order parameter, and the Delaunay triangulation shows that, as the density of columnar defects is lowered, a textit{crossover} (or transition) from Bose glass to BrG phase takes place in this textit{highly anisotropic} high-T${}_c$ superconductor. Most importantly, an analysis of the {low-temperature} 3D vortex-vortex correlation function in terms of the structure factor, calculated via a saddle point approach and the use of the numerical data as input, provides clear-cut evidence of {the} power law decay of the {divergent} Bragg peaks in the BrG phase, a fundamental feature that was inequivocally verified only in isotropic compounds.
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7 single crystals observed in ac susceptibility measurements. We show that the vortex system can be trapped in different metastable states with variable degree of order arising in response to different system histories. The pressure exerted by the oscillating ac field assists the vortex system in ordering, locally reducing the critical current density in the penetrated outer zone of the sample. The robustness of the ordered and disordered states together with the spatial profile of the critical current density lead to the observed memory effects.
We present 3D numerical simulation results of moving vortex lattices in presence of 1D correlated disorder at zero temperature. Our results with field tilting confirm the theoritical predictions of a moving Bose glass phase, characterized by transverse pinning and dynamical transverse Meissner effect, the moving flux lines being localized along the correlated disorder direction. Beyond a critical transverse field, vortex lines exhibit along all their length a kink structure resulting from an effective static tin roof pinning potential in the transverse direction.
YBaCuO nanowires were reproducibly fabricated down to widths of 50 nm. A Au/Ti cap layer on YBCO yielded high electrical performance up to temperatures above 80 K in single nanowires. Critical current density of tens of MA/cm2 at T = 4.2 K and of 10 MA/cm2 at 77 K were achieved that survive in high magnetic fields. Phase-slip processes were tuned by choosing the size of the nanochannels and the intensity of the applied external magnetic field. Data indicate that YBCO nanowires are rather attractive system for the fabrication of efficient sensors, supporting the notion of futuristic THz devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا