Do you want to publish a course? Click here

Searches for Skyrmions in the Limit of Zero g-Factor

121   0   0.0 ( 0 )
 Added by David R. Leadley
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Energy gaps have been measured for the ferromagnetic quantum Hall effect states at v=1 and 3 in GaAs/GaAlAs heterojunctions as a function of Zeeman energy, which is reduced to zero by applying hydrostatic pressures of up to 20kbar. At large Zeeman energy the gaps are consistent with spin wave excitations. For a low density sample the gap at v=1 decreases with increasing pressure and reaches a minimum when the g-factor vanishes. At small Zeeman energy the excitation appears to consist of a large number of reversed spins and may be interpreted as a Skyrmion. The data also suggest Skyrmionic excitations take place at v=3. The width of the minimum at v=1 is found to decrease as the g-factor is reduced in a similar way for all samples.



rate research

Read More

Solid-state experimental realizations of Majorana bound states are based on materials with strong intrinsic spin-orbit interactions. In this paper, we explore an alternative approach where spin-orbit coupling is induced artificially through a nonuniform magnetic field that originates from an array of micromagnets. Using a recently developed optimization algorithm, we find suitable magnet geometries for the emergence of topological superconductivity in wires without intrinsic spin-orbit coupling. We confirm the robustness of Majorana bound states against disorder and periodic potentials whose amplitudes do not exceed the Zeeman energy. Furthermore, we identify low g-factor materials commonly used in mesoscopic physics experiments as viable candidates for Majorana devices.
We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic configuration give rise to a time-dependent damping of the Skyrmion motion. From the frequency dependence of the damping kernel, we are able to identify the Skyrmion mass, thus providing a microscopic description of the kinematic properties of Skyrmions. When defects are present or a magnetic trap is applied, the Skyrmion mass acquires a finite value proportional to the effective spin, even at vanishingly small temperature. We demonstrate that a Skyrmion in a confined geometry provided by a magnetic trap behaves as a massive particle owing to its quasi-one-dimensional confinement. An additional quantum mass term is predicted, independent of the effective spin, with an explicit temperature dependence which remains finite even at zero temperature.
286 - Norio Kumada , Koji Muraki 2009
We investigate quasiparticles in bilayer quantum Hall systems around total filling factor nu =1 by current-pumped and resistively detected NMR. The measured Knight shift reveals that the spin component in the quasiparticle increases continuously with $Delta_{SAS}$. Combined with results for the pseudospin component obtained by activation gap measurements, this demonstrates that both spin and pseudospin are contained in a quasiparticle at intermediate $Delta_{SAS}$, providing evidence for the existence of the spin-pseudospin intermixed SU(4) skyrmion. Nuclear spin relaxation measurements show that the collective behavior of the SU(4) skyrmion system qualitatively changes with $Delta_{SAS}$.
Dirac electrons in graphene are to lowest order spin 1/2 particles, owing to the orbital symmetries at the Fermi level. However, anisotropic corrections in the $g$-factor appear due to the intricate spin-valley-orbit coupling of chiral electrons. We resolve experimentally the $g$-factor along the three orthogonal directions in a large-scale graphene sample. We employ a Hall bar structure with an external magnetic field of arbitrary direction, and extract the effective $g$-tensor via resistively-detected electron spin resonance. We employ a theoretical perturbative approach to identify the intrinsic and extrinsic spin orbit coupling and obtain a fundamental parameter inherent to the atomic structure of $^{12}$C, commonly used in ab-initio models.
We report measurements of the interaction-induced quantum Hall effect in a spin-polarized AlAs two-dimensional electron system where the electrons occupy two in-plane conduction band valleys. Via the application of in-plane strain, we tune the energies of these valleys and measure the energy gap of the quantum Hall state at filling factor $ u$ = 1. The gap has a finite value even at zero strain and, with strain, rises much faster than expected from a single-particle picture, suggesting that the lowest energy charged excitations at $ u=1$ are valley Skyrmions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا