Fixed-Node Monte Carlo Calculations for the 1d Kondo Lattice Model


Abstract in English

The effectiveness of the recently developed Fixed-Node Quantum Monte Carlo method for lattice fermions, developed by van Leeuwen and co-workers, is tested by applying it to the 1D Kondo lattice, an example of a one-dimensional model with a sign problem. The principles of this method and its implementation for the Kondo Lattice Model are discussed in detail. We compare the fixed-node upper bound for the ground state energy at half filling with exact-diagonalization results from the literature, and determine several spin correlation functions. Our `best estimates for the ground state correlation functions do not depend sensitively on the input trial wave function of the fixed-node projection, and are reasonably close to the exact values. We also calculate the spin gap of the model with the Fixed-Node Monte Carlo method. For this it is necessary to use a many-Slater-determinant trial state. The lowest-energy spin excitation is a running spin soliton with wave number pi, in agreement with earlier calculations.

Download