Do you want to publish a course? Click here

Non-Arrhenius modes in the relaxation of model proteins

89   0   0.0 ( 0 )
 Added by Skorobogatiy Maksim
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the relaxational dynamics for a protein model at various temperatures. Theoretical analysis of this model in conjunction with numerical simulations suggests several relaxation regimes, including a single exponential, a power law and a logarithmic time dependence. Even though a stretched exponential form gives a good fit to the simulation results in the crossover regime between a single exponential and a power law decay, we have not been able to directly deduce this form from the theoretical analysis.



rate research

Read More

Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key problem in structural biology. Here, we introduce a general model and use computer simulations to study the equilibrium properties and the folding kinetics of a $C_{alpha}$-based two helix bundle fragment (comprised of 66 amino-acids) of Bacteriorhodopsin. Various intermediates are identified and their free energy are calculated toghether with the free energy barrier between them. In 40% of folding trajectories, the folding rate is considerably increased by the presence of non-obligatory intermediates acting as traps. In all cases, a substantial portion of the helices is rapidly formed. This initial stage is followed by a long period of consolidation of the helices accompanied by their correct packing within the membrane. Our results provide the framework for understanding the variety of folding pathways of helical transmembrane proteins.
We present a Monte Carlo method that allows efficient and unbiased sampling of Hamiltonian walks on a cubic lattice. Such walks are self-avoiding and visit each lattice site exactly once. They are often used as simple models of globular proteins, upon adding suitable local interactions. Our algorithm can easily be equipped with such interactions, but we study here mainly the flexible homopolymer case where each conformation is generated with uniform probability. We argue that the algorithm is ergodic and has dynamical exponent z=0. We then use it to study polymers of size up to 64^3 = 262144 monomers. Results are presented for the effective interaction between end points, and the interaction with the boundaries of the system.
We examine the question of the criteria of the relaxation to the equilibrium in the hard disk dynamics. In the Event-Chain Monte Carlo, we check the displacement distributions which follows to the exponential law.
A two amino acid (hydrophobic and polar) scheme is used to perform the design on target conformations corresponding to the native states of twenty single chain proteins. Strikingly, the percentage of successful identification of the nature of the residues benchmarked against naturally occurring proteins and their homologues is around 75 % independent of the complexity of the design procedure. Typically, the lowest success rate occurs for residues such as alanine that have a high secondary structure functionality. Using a simple lattice model, we argue that one possible shortcoming of the model studied may involve the coarse-graining of the twenty kinds of amino acids into just two effective types.
We have exactly solved the relaxational dynamics of a model protein which possesses a kinetically perfect funnel-like energy landscape. We find that the dependence of the relaxation time, $tau$, on the density of states (DOS) and the energy level spacing distributions of the model displays several main types of behavior depending on the temperature $T$. This allows us to identify possible generic features of the relaxation. For some ranges of $T$, $tau$ is insensitive to the density of states; for intermediate values of $T$ it depends on the energy level spacing distribution rather than on the DOS directly, and it becomes gradually more dependent on DOS with increasing temperature; finally, the relaxation can also be determined exclusively by the presence of a deep gap in the energy spectrum rather than by the detailed features of the density of states. We found that the behavior of $tau$ crucially depends on the degeneracy of the energy spectrum. For the special case of exponentially increasing degeneracy, we were able to identify a characteristic temperature which roughly separates the relaxational regimes controlled by energetics and by entropy, respectively. Finally, the validity of our theory is discussed when roughness of energy landscape is added.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا