No Arabic abstract
We study two-leg S=1/2 ladders with general isotropic exchange interactions between spins on neighboring rungs, whose ground state can be found exactly in a form of finitely correlated (matrix product) wave function. Two families of models admitting an exact solution are found: one yields translationally invariant ground states and the other describes spontaneously dimerized models with twofold degenerate ground state. Several known models with exact ground states can be obtained as particular cases from the general solution of the first family, which includes also a set of models with only bilinear interactions. Those two families of models have nonzero intersection, which enables us to determine exactly the phase boundary of the second-order transition into the dimerized phase and to study the properties of this transition. The structure of elementary excitations in the dimerized phase is discussed on the basis of a variational ansatz. For a particular class of models, we present exact wave functions of the elementary excitations becoming gapless at second-order transition lines. We also propose a generalization of the Bose-Gayen ladder model which has a rich phase diagram with all phase boundaries being exact.
Potassium-doped terphenyl has recently attracted attention as a potential host for high-transition-temperature superconductivity. Here, we elucidate the many-body electronic structure of recently synthesized potassium-doped terphenyl crystals. We show that this system may be understood as a set of weakly coupled one-dimensional ladders. Depending on the strength of the inter-ladder coupling the system may exhibit spin-gapped valence-bond solid or antiferromagnetic phases, both of which upon hole doping may give rise to superconductivity. This terphenyl-based ladder material serves as a new platform for investigating the fate of ladder phases in presence of three-dimensional coupling as well as for novel superconductivity.
We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-$1/2$ Heisenberg antiferromagnetic ladder compound $mathrm{(C_7H_{10}N)_2CuBr_4}$. The staggered order was previously evidenced from a continuous and symmetric splitting of $^{14}$N NMR spectral lines on lowering temperature below $T_csimeq 330$ mK, with a saturation towards $simeq 150$ mK. Unexpectedly, the split lines begin to further separate away below $T^*sim 100$ mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate $T_1^{-1}$ measurements. A very strong suppression reflecting the ordering, $T_1^{-1}sim T^{5.5}$, observed above $T^*$, is replaced by $T_1^{-1}sim T$ below $T^*$. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.
The magnetic responses of a spin-1/2 ladder doped with non-magnetic impurities are studied using various methods and including the regime where frustration induces incommensurability. Several improvements are made on the results of the seminal work of Sigrist and Furusaki [J. Phys. Soc. Jpn. 65, 2385 (1996)]. Deviations from the Brillouin magnetic curve due to interactions are also analyzed. First, the magnetic profile around a single impurity and effective interactions between impurities are analyzed within the bond-operator mean-field theory and compared to density-matrix renormalization group calculations. Then, the temperature behavior of the Curie constant is studied in details. At zero-temperature, we give doping-dependent corrections to the results of Sigrist and Furusaki on general bipartite lattice and compute exactly the distribution of ladder cluster due to chain breaking effects. Using exact diagonalization and quantum Monte-Carlo methods on the effective model, the temperature dependence of the Curie constant is compared to a random dimer model and a real-space renormalization group scenario. Next, the low-part of the magnetic curve corresponding to the contribution of impurities is computed using exact diagonalization. The random dimer model is shown to capture the bulk of the curve, accounting for the deviation from the Brillouin response. At zero-temperature, the effective model prediction agrees relatively well with density-matrix renormalization group calculations. Finite-temperature effects are displayed within the effective model and for large depleted ladder models using quantum Monte-Carlo simulations. In all, the effect of incommensurability does not display a strong qualitative effect on both the magnetic susceptibility and the magnetic curve. Consequences for experiments on the BiCu2PO6 compound and other spin-gapped materials are briefly discussed.
We investigate the properties of antiferromagnetic spin-S ladders with the help of local Berry phases defined by imposing a twist on one or a few local bonds. In gapped systems with time reversal symmetry, these Berry phases are quantized, hence able in principle to characterize different phases. In the case of a fully frustrated ladder where the total spin on a rung is a conserved quantity that changes abruptly upon increasing the rung coupling, we show that two Berry phases are relevant to detect such phase transitions: the rung Berry phase defined by imposing a twist on one rung coupling, and the twist Berry phase defined by twisting the boundary conditions along the legs. In the case of non-frustrated ladders, we have followed the fate of both Berry phases when interpolating between standard ladders and dimerized spin chains. A careful investigation of the spin gap and of edge states shows that a change of twist Berry phase is associated to a quantum phase transition at which the bulk gap closes, and at which, with appropriate boundary conditions, edge states appear or disappear, while a change of rung Berry phase is not necessarily associated to a quantum phase transition. The difference is particularly acute for regular ladders, in which the twist Berry phase does not change at all upon increasing the rung coupling from zero to infinity while the rung Berry phase changes 2S times. By analogy with the fully frustrated ladder, these changes are interpreted as cross-overs between domains in which the rungs are in different states of total spin from 0 in the strong rung limit to 2S in the weak rung limit. This interpretation is further supported by the observation that these cross-overs turn into real phase transitions as a function of rung coupling if one rung is strongly ferromagnetic, or equivalently if one rung is replaced by a spin 2S impurity.
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the Density Matrix Renormalization Group technique, we calculate the dynamical spin structure factor $S({bf k},omega)$ of a generalized $t-U-J$ Hubbard model away from half-filling in a two-leg ladder geometry. The addition of $J$ enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of $(pi,pi)$. In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave-vector $k_{rung}=0$ does not change substantially with doping where pairing dominates, and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one dimensional magnetic materials can be measured, and also address implications for recent resonant inelastic X-ray scattering experiments.