Do you want to publish a course? Click here

Jamming transition in a homogeneous one-dimensional system: the Bus Route Model

217   0   0.0 ( 0 )
 Added by Owen J. O'Loan
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a driven diffusive model which we call the Bus Route Model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses) and one of which is non-conserved (``passengers). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate lambda. We study the model by simulation, heuristic argument and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit lambda -> 0. For small lambda, we argue that the transition is replaced by an abrupt crossover which is exponentially sharp in 1/lambda. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between ``buses and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.



rate research

Read More

We study the phenomenon of jamming in driven diffusive systems. We introduce a simple microscopic model in which jamming of a conserved driven species is mediated by the presence of a non-conserved quantity, causing an effective long range interaction of the driven species. We study the model analytically and numerically, providing strong evidence that jamming occurs; however, this proceeds via a strict phase transition (with spontaneous symmetry breaking) only in a prescribed limit. Outside this limit, the nearby transition (characterised by an essential singularity) induces sharp crossovers and transient coarsening phenomena. We discuss the relevance of the model to two physical situations: the clustering of buses, and the clogging of a suspension forced along a pipe.
189 - Hyungjoon Soh , Meesoon Ha , 2017
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially-condensed phase is the most interesting, compared to that in the original SB problem.
166 - Amir Bar , David Mukamel 2013
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions which exhibits a mixed order transition (MOT), namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models which are seemingly unrelated. The model we present serves as a link between two classes of models which exhibit MOT in one dimension, namely, spin models with a coupling constant which decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the mid range velocity.
The equilibrium properties of a Janus fluid confined to a one-dimensional channel are exactly derived. The fluid is made of particles with two faces (active and passive), so that the pair interaction is that of hard spheres, except if the two active faces are in front of each other, in which case the interaction has a square-well attractive tail. Our exact solution refers to quenched systems (i.e., each particle has a fixed face orientation), but we argue by means of statistical-mechanical tools that the results also apply to annealed systems (i.e., each particle can flip its orientation) in the thermodynamic limit. Comparison between theoretical results and Monte Carlo simulations for quenched and annealed systems, respectively, shows an excellent agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا