Do you want to publish a course? Click here

Mechanisms of synchronization and pattern formation in a lattice of pulse-coupled oscillators

361   0   0.0 ( 0 )
 Added by Albert Diaz-Guilera
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the physical mechanisms leading either to synchronization or to the formation of spatio-temporal patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a mathematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Furthermore, we show that this stability is the responsible for the different behaviors.



rate research

Read More

We study the dynamical behavior of an ensemble of oscillators interacting through short range bidirectional pulses. The geometry is 1D with periodic boundary conditions. Our interest is twofold. To explore the conditions required to reach fully synchronization and to invewstigate the time needed to get such state. We present both theoretical and numerical results.
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time $T$ in random networks, and find a scaling law which relates $T$ to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
We extend our 2+1 dimensional discrete growth model (PRE 79, 021125 (2009)) with conserved, local exchange dynamics of octahedra, describing surface diffusion. A roughening process was realized by uphill diffusion and curvature dependence. By mapping the slopes onto particles two-dimensional, nonequilibrium binary lattice model emerge, in which the (smoothing/roughening) surface diffusion can be described by attracting or repelling motion of oriented dimers. The binary representation allows simulations on very large size and time scales. We provide numerical evidence for Mullins-Herring or molecular beam epitaxy class scaling of the surface width. The competition of inverse Mullins-Herring diffusion with a smoothing deposition, which corresponds to a Kardar-Parisi-Zhang (KPZ) process generates different patterns: dots or ripples. We analyze numerically the scaling and wavelength growth behavior in these models. In particular we confirm by large size simulations that the KPZ type of scaling is stable against the addition of this surface diffusion, hence this is the asymptotic behavior of the Kuramoto-Sivashinsky equation as conjectured by field theory in two dimensions, but has been debated numerically. If very strong, normal surface diffusion is added to a KPZ process we observe smooth surfaces with logarithmic growth, which can describe the mean-field behavior of the strong-coupling KPZ class. We show that ripple coarsening occurs if parallel surface currents are present, otherwise logarithmic behavior emerges.
A lattice of three-state stochastic phase-coupled oscillators introduced by Wood it et al. exhibits a phase transition at a critical value of the coupling parameter $a$, leading to stable global oscillations (GO). On a complete graph, upon further increase in $a$, the model exhibits an infinite-period (IP) phase transition, at which collective oscillations cease and discrete rotational ($C_3$) symmetry is broken. In the case of large negative values of the coupling, Escaff et al. discovered the stability of travelling-wave states with no global synchronization but with local order. Here, we verify the IP phase in systems with long-range coupling but of lower connectivity than a complete graph and show that even for large positive coupling, the system sometimes fails to reach global order. The ensuing travelling-wave state appears to be a metastable configuration whose birth and decay (into the previously described phases) are associated with the initial conditions and fluctuations.
We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other e.g. through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stochastic steps along a biased chemical free energy landscape. We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the coupling can lead to a significant enhancement in the overall catalytic rate of the enzymes. Both effects can be understood as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling. Our findings suggest that despite their molecular scale enzymes can be cooperative and improve their performance in dense metabolic clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا