No Arabic abstract
We present Monte Carlo data for a linear chain with excluded volume subjected to a uniform stretching. Simulation of long chains (up to 6000 beads) at high stretching allows us to observe the signature of tensile blobs as a crossover in the scaling behavior of the chain scattering function for wave vectors perpendicular to stretching. These results and corresponding ones in the stretching direction allow us to verify for the first time Pincus prediction on scaling inside blobs. Outside blobs, the scattering function is well described by the Debye function for a stretched ideal chain.
The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars is modeled by an ultrasoft pair potential which is logarithmic in the core-core distance. Among the stable phases are a fluid as well as body-centered cubic, face-centered cubic, body-centered orthogonal, and diamond crystals. In a limited range of arm numbers, reentrant melting and reentrant freezing transitions occur for increasing density.
We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubber-like materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models are studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $rho_R(2 N_L, z)=rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of rings and chains in $z$-direction coincide, too, and increase linearly with $N_L$, the transverse components differ, even with respect to their scaling properties: $R_{gxy}^{(L)} propto N_L^{1/2}$, $R_{gxy}^{(R)} propto N_L^{0.4}$. These properties are interpreted in terms of the statistical properties known for ring polymers in dense melts.
We study the relaxation dynamics of a coarse-grained polymer chain at different degrees of stretching by both analytical means and numerical simulations. The macromolecule is modelled as a string of beads, connected by anharmonic springs, subject to a tensile force applied at the end monomer of the chain while the other end is fixed at the origin of coordinates. The impact of bond non-linearity on the relaxation dynamics of the polymer at different degrees of stretching is treated analytically within the Gaussian self-consistent approach (GSC) and then compared to simulation results derived from two different methods: Monte-Carlo (MC) and Molecular Dynamics (MD). At low and medium degrees of chain elongation we find good agreement between GSC predictions and the Monte-Carlo simulations. However, for strongly stretched chains the MD method, which takes into account inertial effects, reveals two important aspects of the nonlinear interaction between monomers: (i) a coupling and energy transfer between the damped, oscillatory normal modes of the chain, and (ii) the appearance of non-vanishing contributions of a continuum of frequencies around the characteristic modes in the power spectrum of the normal mode correlation functions.
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations $C$ and initial density $rho_{rm init}$ and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same $C$, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by $rho_{rm init}$. We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.