No Arabic abstract
The underscreened Kondo effect is studied within a model of two impurities S=1 interacting with the conduction band and via an interimpurity coupling $Kvec{S_1}.vec{S_2}$. Using a mean-field treatment of the bosonized Hamiltonian, we show that there is no phase transition, but a continuous cross-over versus K from a non Kondo behaviour to an underscreened Kondo one. For a small antiferromagnetic coupling (K>0), a completely asymmetric situation is obtained with one s=${1/2}$ component strongly screened by the Kondo effect and the other one almost free to yield indirect magnetism, which shows finally a possible coexistence between a RKKY interaction and a local Kondo effect, as observed in Uranium compounds such as $UPt_3$.
We study the low-temperature properties of the generalized Anderson impurity model in which two localized configurations, one with two doublets and the other with a triplet, are mixed by two degenerate conduction channels. By using the numerical renormalization group and the non-crossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium conductance for several values of the model parameters. Marked differences with respect to the conventional one-channel spin $s=1/2$ Anderson model, that can be traced as hallmarks of an impurity spin $S=1$, are found in the Kondo temperature, the width and position of the charge transfer peak, as well as the temperature dependence of the equilibrium conductance. Furthermore, we analyze the rich effects of a single-ion magnetic anisotropy $D$ on the Kondo behavior. In particular, as shown before, for large enough positive $D$ the system behaves as a non-Landau Fermi liquid that cannot be adiabatically connected to a non-interacting system turning off the interactions. For negative $D$ the Kondo effect is strongly suppressed. The model studied is suitable for a comprehensive analysis for recent investigations of a single Ni impurity embedded into an Au chain.
Magnetic properties of uranium and neptunium compounds showing the coexistence of Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate $f$-level in each site, corresponding to $5f^2$ electronic configuration with $S=1$ spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective $f$-band term, in addition to the regular exchange Kondo interaction between the $S=1$ $f$-spins and the $s=1/2$ spins of the conduction electrons. The obtained effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of $5f$-electron. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant $J_K$, the magnetic intersite exchange interaction $J_H$ and the effective $f$-bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.
We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling $J_K$, longitudinal anisotropy $D$, and transverse anisotropy $E$. In the isotropic case, two impurities on opposite(same) sublattices have a singlet(triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively four-fold degenerate ground state, i.e., two decoupled impurities. For large enough $J_K$ the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear non-perturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persists and the two effects coexist: the impurities are underscreened, and the dangling spin-$1/2$ degrees of freedom are responsible for the inter-impurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasi-classical correlations.
We show that a self-assembled phase of potassium (K) doped single-layer para-sexiphenyl (PSP) film on gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we find a Kondo resonance peak near EF with a Kondo temperature of about 30 K. The Kondo resonance peak splits when another K-doped PSP molecule is present in the vicinity, and the splitting gradually increases with the decreased inter-molecular distance, with no signs of phase transition. Our data demonstrate how a Kondo singlet state gradually evolves into an antiferromagnetic singlet state due to the competition between Kondo screening and antiferromagnetic RKKY coupling, as described in the two-impurity Kondo model. Intriguingly, the antiferromagnetic singlet is destroyed quickly upon increasing temperature and transforms back to a Kondo singlet well below the Kondo temperature. Our data provide a comprehensive picture and quantitative constraints on related theories and calculations of two-impurity Kondo model.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from that in conventional ferromagnetic materials. For a half-filled impurity in undoped graphene, the presence of ferromagnetism can bring forth Kondo correlations, yielding two kink structures in the local spectral function near the Fermi energy. When the spin splitting of local occupations is compensated by an external magnetic field, the two Kondo kinks merge into a full Kondo resonance characterizing the fully screened ground state. Strikingly, we find the resulting Kondo temperature monotonically increases with the spin polarization of Dirac electrons, which violates the common sense that ferromagnetic bands are usually detrimental to Kondo correlations. Doped ferromagnetic graphene can behave as half metals, where its density of states at the Fermi energy linearly vanishes for one spin direction but keeps finite for the opposite direction. In this regime, we demonstrate an abnormal Kondo resonance that occurs in the first spin direction, while completely absent in the other one.