No Arabic abstract
We present the exact Bethe Ansatz solution of a multichannel model of one- dimensional correlated electrons coupled antiferromagnetically to a magnetic impurity of arbitrary spin S. The solution reveals that interactions in the bulk make the magnetic impurity drive both spin and charge fluctuations, producing a mixed valence at the impurity site, with an associated effective spin S_eff > S in the presence of a magnetic field. The screening of the impurity spin is controlled by its size independently of the number of channels, in contrast to the multichannel Kondo effect for free electrons.
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exact diagonalization (ED) approach for ground state properties as well as the finite temperature Lanczos method (FTLM) for specific heat and the uniform susceptibility are employed for small tiles on the square lattice. They lead to two major results: Firstly we show that the screened local moment exhibits non-monotonic behavior as a function of U for weak Kondo coupling J_K. Secondly the temperature dependence of the susceptibility obtained from FTLM allows to extract the dependence of the characteristic Kondo temperature scale T* on the correlation strength U. A monotonic increase of T* for small U is found resolving the ambiguity from earlier investigations. In the large U limit the model is equivalent to the 2D Kondo necklace model with two types of localized spins. In this limit the numerical results can be compared to those of the analytical bond operator method in mean field treatment and excellent agreement for the total paramagnetic moment is found, supporting the reliability of both methods.
We study the low-temperature thermodynamics of a spin-S magnetic impurity coupled to m degenerate bands of interacting electrons in one dimension. By exploiting boundary conformal field theory techniques, we derive exact results for the possible impurity thermal and magnetic response. The leading behavior of the impurity magnetic susceptibility is shown to be insensitive to the electron-electron interaction. In contrast, there are two types of scaling behavior of the impurity specific heat consistent with the symmetries of the problem: Either it remains the same as for the ordinary multichannel Kondo problem for noninteracting electrons, or it acquires a new leading term governed by an interaction-dependent critical exponent. We conjecture that the latter behavior is indeed realized when the impurity is exactly screened (m=2S).
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective mass, and thermopower in low-disordered silicon MOSFETs.
We investigate the ground-state of a p-wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability of the Haldane state obtained in the SU(2) symmetric case without the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the entanglement entropy we show that in the anisotropic case a phase transition occurs and a Neel state emerges above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the entanglement spectrum and the spin profile of the system which clarify the structure of each phase.
The emerging and screening of local magnetic moments in solids has been investigated for more than 60 years. Local vacancies as in graphene or in Heavy Fermions can induce decoupled bound states that lead to the formation of local moments. In this paper, we address the puzzling question how these local moments can be screened and what determines the additionally emerging low temperature scale. We review the initial problem for half-filled conduction bands from two complementary perspectives: By a single-particle supercell analysis in the uncorrelated limit and by the Lieb-Mathis theorem for systems with a large Coulomb interaction $U$. We proof that the stable local moments are subject to screening by three different mechanisms. Firstly the local moments are delocalized by a finite $U$ beyond the single-particle bound state. We find a Kosterlitz-Thouless type transition governed by an exponentially suppressed low energy scale of a counterintuitive Kondo form with $J_{rm eff} propto U^n$ for small $U$, where $n>1$ depends on the precise model. Secondly, we show that away from half-filling the local moment phase becomes unstable and is replaced by two types of singlet phases that are adiabatically connected. At a critical value for the band center, the physics is governed by an exponentially suppressed Kondo scale approaching the strong coupling phase that is replaced by an singlet formation via antiferromagnetic RKKY interaction for large deviation from the critical values. Thirdly, we show that the local magnetic moment can be screened by a Kondo hole orbital at finite energy, even though the orbital occupation is negligible: An additional low energy scale emerges below which the localized moment is quenched. Similarities to the experimental findings in Ce$_{1-x}$La$_x$Pd$_3$ are pointed out.