No Arabic abstract
Off-diagonal profiles of local densities (e.g. order parameter or energy density) are calculated at the bulk critical point, by conformal methods, for different types of boundary conditions (free, fixed and mixed). Such profiles, which are defined by a non-vanishing matrix element of the appropriate operator between the ground state and the corresponding lowest excited state of the strip Hamiltonian, enter into the expression of two-point correlation functions on a strip. They are of interest in the finite-size scaling study of bulk and surface critical behaviour since they allow the elimination of regular contributions. The conformal profiles, which are obtained through a conformal transformation of the correlation functions from the half-plane to the strip, are in agreement with the results of a direct calculation, for the energy density of the two-dimensional Ising model.
Covariant perturbation expansion is an important method in quantum field theory. In this paper an expansion up to arbitrary order for off-diagonal heat kernels in flat space based on the covariant perturbation expansion is given. In literature, only diagonal heat kernels are calculated based on the covariant perturbation expansion.
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time-evolution of the system reduces to the Lindblad equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfy discre
We study the critical energy and magnetization profiles for the Ising quantum chain with a marginal extended surface perturbation of the form A/y, y being the distance from the surface (Hilhorst-van Leeuwen model). For weak local couplings, A<A_c, the model displays a continuous surface transition with A-dependent exponents, whereas, for A>A_c, there is surface order at the bulk critical point. If conformal invariance is assumed to hold with such marginal perturbations, it predicts conformal profiles with the same scaling form as for the unperturbed quantum chain, with marginal surface exponents replacing the unperturbed ones. The results of direct analytical and numerical calculations of the profiles confirm the validity of the conformal expressions in the regimes of second- and first-order surface transitions.
Uhlmanns concept of quantum holonomy for paths of density operators is generalised to the off-diagonal case providing insight into the geometry of state space when the Uhlmann holonomy is undefined. Comparison with previous off-diagonal geometric phase definitions is carried out and an example comprising the transport of a Bell-state mixture is given.