Nodes of the superconducting gap probed by electronic Raman scattering in HgBa_{2}CaCu_{2}O_{6+delta } single crystals


Abstract in English

Pure electronic Raman spectra with no phonon structures superimposed to the electronic continuum, are reported, in optimally doped HgBa_{2}CaCu_{2}O_{6+delta } single crystals (T_{c }=126 K). As a consequence, the spectra in the A_{1g }, B_{1g } and B_{2g } symmetries, including the crucial low energy frequency dependence of the electronic scattering, are directly and reliably measured. The B_{2g } and, most strikingly, the B_{1g } spectra exhibit a strong intrinsic linear term, which suggests that the nodes are shifted from the [110] and [1bar{1}0] directions, a result inconsistent with a pure d_{x^{2}-y^{2}} model.

Download