No Arabic abstract
FeGe_2, and lightly doped compounds based on it, have a Fermi surface driven instability which drive them into an incommensurate spin density wave state. Studies of the temperature and magnetic field dependence of the resistivity have been used to determine the magnetic phase diagram of the pure material which displays an incommensurate phase at high temperatures and a commensurate structure below 263 K in zero field. Application of a magnetic field in the tetragonal basal plane decreases the range of temperatures over which the incommensurate phase is stable. We have used inelastic neutron scattering to measure the spin dynamics of FeGe_2. Despite the relatively isotropic transport the magnetic dynamics is quasi-one dimensional in nature. Measurements carried out on HET at ISIS have been used to map out the spin wave dispersion along the c-axis up the 400 meV, more than an order of magnitude higher than the zone boundary magnon for wavevectors in the basal plane.
Bulk rutile RuO$_2$ has long been considered a Pauli paramagnet. Here we report that RuO$_2$ exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05 $mu_B$ as evidenced by polarized neutron diffraction. Density functional theory plus $U$ (DFT+$U$) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard $U$ of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposed by the rutile crystal field. The combination of high Neel temperature and small itinerant moments make RuO$_2$ unique among ruthenate compounds and among oxide materials in general.
Compounds based on the Fe2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a non-centrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. Here we report the growth and characterization of mm size single crystals of FeMnP0.8Si0.2. Single crystal x-ray diffraction, magnetization, resistivity, Hall and heat capacity data are reported. Surprisingly, the crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room temperature resistivity is close to the Ioffe-Regel limit for a metal. Single crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism are not changed after high temperature anneals and a rapid quench to room temperature.
We have used resistivity measurements to study the magnetic phase diagram of the itinerant antiferromagnet FeGe_2 in the temperature range from 0.3->300 K in magnetic fields up to 16 T. In contrast to theoretical predictions, the incommensurate spin density wave phase is found to be stable at least up to 16 T, with an estimated critical field mu _0H_c of ~ 30 T. We have also studied the low temperature magnetoresistance in the [100], [110], and [001] directions. The transverse magnetoresistance is well described by a power law for magnetic fields above 1 T with no saturation observed at high fields. We discuss our results in terms of the magnetic structure and the calculated electronic bandstructure of FeGe_2. We have also observed, for the first time in this compound, Shubnikov-de Haas oscillations in the transverse magnetoresistance with a frequency of 190 +- 10 T for a magnetic field along [001].
Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors of $Q_{pm}$ = ($H pm 0.557(1)$, 0, $L pm 0.150(1)$) and $Q_text{C}$ = ($H pm 0.564(1)$, 0, $L$), where $left(H, Lright)$ are allowed Miller indices, in an ErPd$_2$Si$_2$ single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The $Q_{pm}$ modulation may be attributed to localized 4emph{f} moments while the $Q_text{C}$ correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd$_2$Si$_2$ represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.
Using a cluster extension of the dynamical mean-field theory (CDMFT) we map out the magnetic phase diagram of the anisotropic square lattice Hubbard model with nearest-neighbor intrachain $t$ and interchain $t_{perp}$ hopping amplitudes at half-filling. A fixed value of the next-nearest-neighbor hopping $t=-t_{perp}/2$ removes the nesting property of the Fermi surface and stabilizes a paramagnetic metal phase in the weak-coupling regime. In the isotropic and moderately anisotropic regions, a growing spin entropy in the metal phase is quenched out at a critical interaction strength by the onset of long-range antiferromagnetic (AF) order of preformed local moments. It gives rise to a first-order metal-insulator transition consistent with the Mott-Heisenberg picture. In contrast, a strongly anisotropic regime $t_{perp}/tlesssim 0.3$ displays a quantum critical behavior related to the continuous transition between an AF metal phase and the AF insulator. Hence, within the present framework of CDMFT, the opening of the charge gap is magnetically driven as advocated in the Slater picture. We also discuss how the lattice-anisotropy-induced evolution of the electronic structure on a metallic side of the phase diagram is tied to the emergence of quantum criticality.