We apply a recent adaptation of Whites density matrix renormalisation group (DMRG) method to a simple quantum spin model, the dimerised $XY$ chain, in order to assess the applicabilty of the DMRG to quantum systems at non-zero temperature. We find that very reasonable results can be obtained for the thermodynamic functions down to low temperatures using a very small basis set. Low temperature results are found to be most accurate in the case when there is a substantial energy gap.
The numerical study of anyonic systems is known to be highly challenging due to their non-bosonic, non-fermionic particle exchange statistics, and with the exception of certain models for which analytical solutions exist, very little is known about their collective behaviour as a result. Meanwhile, the density matrix renormalisation group (DMRG) algorithm is an exceptionally powerful numerical technique for calculating the ground state of a low-dimensional lattice Hamiltonian, and has been applied to the study of bosonic, fermionic, and group-symmetric systems. The recent development of a tensor network formulation for anyonic systems opened up the possibility of studying these systems using algorithms such as DMRG, though this has proved challenging both in terms of programming complexity and computational cost. This paper presents the implementation of DMRG for finite anyonic systems, including a detailed scheme for the implementation of anyonic tensors with optimal scaling of computational cost. The anyonic DMRG algorithm is demonstrated by calculating the ground state energy of the Golden Chain, which has become the benchmark system for the numerical study of anyons, and is shown to produce results comparable to those of the anyonic TEBD algorithm and superior to the variationally optimised anyonic MERA, at far lesser computational cost.
The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Colemans picture of `half-asymptotic particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.
A variant of Whites density matrix renormalisation group scheme which is designed to compute low-lying energies of one-dimensional quantum lattice models with a large number of degrees of freedom per site is described. The method is tested on two exactly solvable models---the spin-1/2 antiferromagnetic Heisenberg chain and a dimerised XY spin chain. To illustrate the potential of the method, it is applied to a model of spins interacting with quantum phonons. It is shown that the method accurately resolves a number of energy gaps on periodic rings which are sufficiently large to afford an accurate investigation of critical properties via the use of finite-size scaling theory.
We review Whites density matrix renormalisation group method, an increasingly popular method for the solution of low dimensional quantum Hamiltonians. We describe some applications to frustrated spin systems, quantum critical phenomena, two dimensional classical and one dimensional quantum systems at non-zero temperature, and low energy properties of two dimensional quantum models such as the Hubbard and Heisenberg Hamiltonians.
We introduce a versatile and practical framework for applying matrix product state techniques to continuous quantum systems. We divide space into multiple segments and generate continuous basis functions for the many-body state in each segment. By combining this mapping with existing numerical Density-Matrix Renormalization Group routines, we show how one can accurately obtain the ground-state wave function, spatial correlations, and spatial entanglement entropy directly in the continuum. For a prototypical mesoscopic system of strongly-interacting bosons we demonstrate faster convergence than standard grid-based discretization. We illustrate the power of our approach by studying a superfluid-insulator transition in an external potential. We outline how one can directly apply or generalize this technique to a wide variety of experimentally relevant problems across condensed matter physics and quantum field theory.
R. J. Bursill
,T. Xiang (IRC for Superconductivity
.
(1996)
.
"Density matrix renormalisation group for a quantum spin chain at non-zero temperature"
.
Dr Robert J. Bursill
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا