Semiclassical description of spin ladders


Abstract in English

The Heisenberg spin ladder is studied in the semiclassical limit, via a mapping to the nonlinear $sigma$ model. Different treatments are needed if the inter-chain coupling $K$ is small, intermediate or large. For intermediate coupling a single nonlinear $sigma$ model is used for the ladder. Its predicts a spin gap for all nonzero values of $K$ if the sum $s+tilde s$ of the spins of the two chains is an integer, and no gap otherwise. For small $K$, a better treatment proceeds by coupling two nonlinear sigma models, one for each chain. For integer $s=tilde s$, the saddle-point approximation predicts a sharp drop in the gap as $K$ increases from zero. A Monte-Carlo simulation of a spin 1 ladder is presented which supports the analytical results.

Download