No Arabic abstract
The influence of a layered aperiodic modulation of the couplings on the critical behaviour of the two-dimensional Ising model is studied in the case of marginal perturbations. The aperiodicity is found to induce anisotropic scaling. The anisotropy exponent z, given by the sum of the surface magnetization scaling dimensions, depends continuously on the modulation amplitude. Thus these systems are scale invariant but not conformally invariant at the critical point.
We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.
Based on the results published recently [SciPost Phys. 7, 026 (2019)], the influence of surfaces and boundary fields are calculated for the ferromagnetic anisotropic square lattice Ising model on finite lattices as well as in the finite-size scaling limit. Starting with the open cylinder, we independently apply boundary fields on both sides which can be either homogeneous or staggered, representing different combinations of boundary conditions. We confirm several predictions from scaling theory, conformal field theory and renormalisation group theory: we explicitly show that anisotropic couplings enter the scaling functions through a generalised aspect ratio, and demonstrate that open and staggered boundary conditions are asymptotically equal in the scaling regime. Furthermore, we examine the emergence of the surface tension due to one antiperiodic boundary in the system in the presence of symmetry breaking boundary fields, again for finite systems as well as in the scaling limit. Finally, we extend our results to the antiferromagnetic Ising model.
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation-length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method.
We consider semi-infinite two-dimensional layered Ising models in the extreme anisotropic limit with an aperiodic modulation of the couplings. Using substitution rules to generate the aperiodic sequences, we derive functional equations for the surface magnetization. These equations are solved by iteration and the surface magnetic exponent can be determined exactly. The method is applied to three specific aperiodic sequences, which represent different types of perturbation, according to a relevance-irrelevance criterion. On the Thue-Morse lattice, for which the modulation is an irrelevant perturbation, the surface magnetization vanishes with a square root singularity, like in the homogeneous lattice. For the period-doubling sequence, the perturbation is marginal and the surface magnetic exponent varies continuously with the modulation amplitude. Finally, the Rudin-Shapiro sequence, which corresponds to the relevant case, displays an anomalous surface critical behavior which is analyzed via scaling considerations: Depending on the value of the modulation, the surface magnetization either vanishes with an essential singularity or remains finite at the bulk critical point, i.e., the surface phase transition is of first order.
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.