Do you want to publish a course? Click here

Variation of charge/orbital ordering in layered manganites Pr1-xCa1+xMnO4 investigated by transmission electron microscopy

56   0   0.0 ( 0 )
 Added by Xiuzhen Yu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structural features of the charge/orbital ordering (CO/OO) in single-layered manganites Pr1-xCa1+xMnO4 have been investigated systematically by transmission electron microscopy. Analyses of electron diffraction patterns as well as dark-field images have revealed that the CO/OO shows a striking asymmetric behavior as the hole doping x deviates from x = 0.5. The modulation wavenumber linearly decreases with increasing x in the over-hole-doped (x > 0.5) crystals, while much less dependent on x in the under-hole-doped (x < 0.5) crystals. A temperature-induced incommensurate-commensurate crossover is observed in 0.35 < x < 0.5 and x = 0.65. The correlation length of CO/OO in x = 0.3 was proven to become shorter than that in x > 0.3.



rate research

Read More

We study the ground state orbital ordering of $LaMnO_3$, at weak electron-phonon coupling, when the spin state is A-type antiferromagnet. We determine the orbital ordering by extending to our Jahn-Teller system a recently developed Peierls instability framework for the Holstein model [1]. By using two-dimensional dynamic response functions corresponding to a mixed Jahn-Teller mode, we establish that the $Q_2$ mode determines the orbital order.
282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.
110 - T. Mizokawa , D. I. Khomskii , 2000
We argue that in lightly hole doped perovskite-type Mn oxides the holes (Mn$^{4+}$ sites) are surrounded by nearest neighbor Mn$^{3+}$ sites in which the occupied $3d$ orbitals have their lobes directed towards the central hole (Mn$^{4+}$) site and with spins coupled ferromagnetically to the central spin. This composite object, which can be viewed as a combined orbital-spin-lattice polaron, is accompanied by the breathing type (Mn$^{4+}$) and Jahn-Teller type (Mn$^{3+}$) local lattice distortions. We present calculations which indicate that for certain doping levels these orbital polarons may crystallize into a charge and orbitally ordered ferromagnetic insulating state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا