Do you want to publish a course? Click here

Confined coherence in quasi-one-dimensional metals

85   0   0.0 ( 0 )
 Added by Peter Kopietz
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering processes involving large momentum transfers perpendicular to the chains can completely destroy the warping of the true Fermi surface, leading to a confined state where the renormalized interchain hopping vanishes and a coherent motion perpendicular to the chains is impossible.



rate research

Read More

Correlations between electrons and the effective dimensionality are crucial factors that shape the properties of an interacting electron system. For example, the onsite Coulomb repulsion, U, may inhibit, or completely block the intersite electron hopping, t, and depending on the ratio U/t, a material may be a metal or an insulator. The correlation effects increase as the number of allowed dimensions decreases. In 3D systems, the low energy electronic states behave as quasiparticles (QP), while in 1D systems, even weak interactions break the quasiparticles into collective excitations. Dimensionality is particularly important for a class of new exotic low-dimensional materials where 1D or 2D building blocks are loosely connected into a 3D whole. Small interactions between the blocks may induce a whole variety of unusual transitions. Here, we examine layered systems that in the direction perpendicular to the layers display a crossover from insulating-like, at high temperatures, to metallic-like character at low temperatures, while being metallic over the whole temperature range within the layers. We show that this change in effective dimensionality correlates with the existence or non-existence of coherent quasiparticles within the layers.
69 - S. Guillon , 2002
Electrical conduction is studied along parabolically confined quasi-one dimensional channels, in the framework of a revised linear-response theory, for elastic scattering. For zero magnetic field an explicit multichannel expression for the conductance is obtained that agrees with those of the literature. A similar but new multichannel expression is obtained in the presence of a magnetic field B||z perpendicular to the channel along the x axis. An explicit connection is made between the characteristic time for the tunnel-scattering process and the transmission and reflection coefficients that appear in either expression. As expected, for uncoupled channels the finite field expression gives the complete (Landauer-type) conductance of N parallel channels, a result that has not yet been reported in the literature. In addition, it accounts explicitly for the Hall field and the confining potential and is valid, with slight modifications, for tilted magnetic fields in the (x,z) plane.
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ of a corresponding periodic system, and hence display quantum critical behavior. The corresponding fluctuations render the SU(2) symmetry breaking by the confining potential irrelevant, leading to structure form factors for both correlation functions that scale with the same exponent upon increasing the system size, thus giving rise to a (quasi)supersolid.
70 - S. Kumar , M. Pepper , H. Montagu 2021
We present results on electron transport in quasi-one dimensional (1D) quantum wires in GaAs/AlGaAs heterostructures obtained using an asymmetric confinement potential. The variation of the energy levels of the spatially quantized states is followed from strong confinement through weak confinement to the onset of two-dimensionality. An anticrossing of the initial ground and first excited states is found as the asymmetry of the potential is varied giving rise to two anticrossing events which occur on either side of symmetric confinement. We present results analysing this behaviour and showing how it can be affected by the inhomogeneity in background potential. The use of an enhanced source-drain voltage to alter the energy levels is shown to be a significant validation of the analysis by showing the formation of double rows of electrons which correlate with the anticrossing.
128 - Martin Dressel 2007
Low-dimensional organic conductors could establish themselves as model systems for the investigation of the physics in reduced dimensions. In the metallic state of a one-dimensional solid, Fermi-liquid theory breaks down and spin and charge degrees of freedom become separated. But the metallic phase is not stable in one dimension: as the temperature is reduced, the electronic charge and spin tend to arrange themselves in an ordered fashion due to strong correlations. The competition of the different interactions is responsible for which broken-symmetry ground state is eventually realized in a specific compound and which drives the system towards an insulating state. Here we review the various ordering phenomena and how they can be identified by optic and magnetic measurements. While the final results might look very similar in the case of a charge density wave and a charge-ordered metal, for instance, the physical cause is completely different. When density waves form, a gap opens in the density of states at the Fermi energy due to nesting of the one-dimension Fermi surface sheets. When a one-dimensional metal becomes a charge-ordered Mott insulator, on the other hand, the short-range Coulomb repulsion localizes the charge on the lattice sites and even causes certain charge patterns. We try to point out the similarities and conceptional differences of these phenomena and give an example for each of them. Particular emphasis will be put on collective phenomena which are inherently present as soon as ordering breaks the symmetry of the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا