Do you want to publish a course? Click here

Giant Vortices Below the Surface of NbSe$_2$ Detected Using Low Energy $beta$-NMR

79   0   0.0 ( 0 )
 Added by Zaher Salman
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A low energy radioactive beam of polarized $^8$Li has been used to observe the vortex lattice near the surface of superconducting NbSe$_2$. The inhomogeneous magnetic field distribution associated with the vortex lattice was measured using depth-resolved $beta$-detected NMR. Below $T_c$ one observes the characteristic lineshape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with magnetic field. In particular in a low field of 10.8 mT the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.

rate research

Read More

$beta$-NMR of isolated $^8$Li has been investigated in the normal state of 2H-NbSe$_2$. In a high magnetic field of 3T a single resonance is observed with a Gaussian line width of 3.5 kHz. The line shape varies weakly as function of magnetic field and temperature but has a strong orientation dependence. The nuclear electric quadrupole splitting is unresolved implying that the electric field gradients are 10-100 times smaller than in other non-cubic crystals. The nuclear spin relaxation rate is also anomalously small but varies linearly with temperature as expected for Korringa relaxation in a metal. These results suggest that Li adopts an interstitial position between the weakly coupled NbSe$_2$ layers and away from the conduction band.
The first study of Nernst effect in NbSe$_2$ reveals a large quasi-particle contribution with a magnitude comparable and a sign opposite to the vortex signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall and Nernst coefficients, we argue that this large Nernst signal originates from the thermally-induced counterflow of electrons and holes and indicates a drastic change in the electron scattering rate in the CDW state. The results provide new input for the debate on the origin of the anomalous Nernst signal in high-T$_c$ cuprates.
90 - Yu He , Shan Wu , Yu Song 2018
We report a persistent low-energy phonon broadening around $q_{B} sim 0.28$ r.l.u. along the Cu-O bond direction in the high-$T_c$ cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212). We show that such broadening exists both inside and outside the conventional charge density wave (CDW) phase, via temperature dependent measurements in both underdoped and heavily overdoped samples. Combining inelastic hard x-ray scattering, diffuse scattering, angle-resolved photoemission spectroscopy, and resonant soft x-ray scattering at the Cu $L_3$-edge, we exclude the presence of a CDW in the heavily overdoped Bi-2212 similar to that observed in the underdoped systems. Finally, we discuss the origin of such anisotropic low-energy phonon broadening, and its potential precursory role to the CDW phase in the underdoped region.
The CoO$_{2}$ layers in sodium-cobaltates Na$_{x}$CoO$_{2}$ may be viewed as a spin $S=1/2$ triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high $T_{c}$ cuprates. We will present unequivocal $^{59}$Co NMR evidence that below $T_{CO}sim51 K$, the insulating ground state of the itinerant antiferromagnet Na$_{0.5}$CoO$_{2}$ ($T_{N}sim 86 K$) is induced by charge ordering.
The $g$-factor anisotropy of the heavy quasiparticles in the hidden order state of URu$_2$Si$_2$ has been determined from the superconducting upper critical field and microscopically from Shubnikov-de Haas (SdH) oscillations. We present a detailed analysis of the $g$-factor for the $alpha$, $beta$ and $gamma$ Fermi-surface pockets. Our results suggest a strong $g$-factor anisotropy between the $c$ axis and the basal plane for all observed Fermi surface pockets. The observed anisotropy of the $g$-factor from the quantum oscillations is in good agreement with the anisotropy of the superconducting upper critical field at low temperatures, which is strongly limited by the paramagnetic pair breaking along the easy magnetization axis $c$. However, the anisotropy of the initial slope of the upper critical field near $T_c$ cannot be explained by the anisotropy of the effective masses and Fermi velocities derived from quantum oscillations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا