A granular gas may be modeled as a set of hard-spheres undergoing inelastic collisions; its microscopic dynamics is thus strongly irreversible. As pointed out in several experimental works bearing on turbulent flows or granular materials, the power injected in a dissipative system to sustain a steady-state over an asymptotically large time window is a central observable. We describe an analytic approach allowing us to determine the full distribution of the power injected in a granular gas within a steady-state resulting from subjecting each particle independently either to a random force (stochastic thermostat) or to a deterministic force proportional to its velocity (Gaussian thermostat). We provide an analysis of our results in the light of the relevance, for other types of systems, of the injected power to fluctuation relations.