Do you want to publish a course? Click here

A Direct Probe of Electronic Nematic Order; Symmetry Information in Scanning Tunneling Microscope Images

60   0   0.0 ( 0 )
 Added by Hyeonjin Doh
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

An electronic nematic state spontaneously breaks a point-group symmetry of an underlying lattice. As a result, the nematic-isotropic transition accompanies a Fermi surface distortion. However, the anisotropic nature of the nematic state at a macroscopic scale can be easily wiped out when domains of different orientations of nematic order exist. We suggest that a spatial pattern of local density of states (LDOS) in the presence of a non-magnetic impurity can be a direct probe of the nematic order. We study various patterns of LDOS across the quantum phase transition between the isotropic and nematic phases. Especially the Fourier transformed local density of states (FT-LDOS), which can be deduced from scanning tunneling microscope images, represent a transparent symmetry of an electronic structure. The application of our results to the bilayer ruthenate, Sr$_3$Ru$_2$O$_7$ is also discussed.



rate research

Read More

Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunnelling microscopy using a Greens Function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. The spectral signatures of the Fourier transform of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of non-ideal graphene samples on dual-probe measurements.
Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.
We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approx. 30mK, and in applied magnetic fields up to 13T. The topography of both highly-ordered pyrolytic graphite (HOPG) and the dichalcogenide superconductor NbSe2 have been imaged with atomic resolution down to T approx. 50mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe2 in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence B^{-0.5} and measurements in the STS mode clearly show the superconductive density of states with Andreev bound states in the vortex core.
243 - Thomas Quaglio 2012
We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the displacement of a sample below the probe over several hundred microns at very low temperature, without excessive heating. Atomic force microscopy based on a tuning fork resonator probe is used for cryogenic precise alignment of the tip with an individual device. We demonstrate the local tunneling spectroscopy of a hybrid Josephson junction as a function of its current bias.
The quest to understand correlated electronic systems has pushed the frontiers of experimental measurements toward the development of new experimental techniques and methodologies. Here we use a novel home-built uniaxial-strain device integrated into our variable temperature scanning tunneling microscope that enables us to controllably manipulate in-plane uniaxial strain in samples and probe their electronic response at the atomic scale. Using scanning tunneling microscopy with spin-polarization techniques, we visualize antiferromagnetic domains and their atomic structure in Fe1+yTe samples, the parent compound of iron-based superconductors, and demonstrate how these domains respond to applied uniaxial strain. We observe the bidirectional antiferromagnetic domains in the unstrained sample, with an average domain size of 50 to 150 nm, to transition into a single unidirectional domain under applied uniaxial strain. The findings presented here open a new direction to utilize a valuable tuning parameter in scanning tunneling microscopy, as well as other spectroscopic techniques, both for tuning the electronic properties as for inducing symmetry breaking in quantum material systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا