Do you want to publish a course? Click here

Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice

56   0   0.0 ( 0 )
 Added by Cristiano Nisoli
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the rotational demagnetization of artificial spin ice, a recently realized array of nanoscale single-domain ferromagnetic islands. Demagnetization does not anneal this model system into its anti-ferromagnetic ground state: the moments have a static disordered configuration similar to the frozen state of the spin ice materials. We demonstrate that this athermal system has an effective extensive degeneracy and we introduce a formalism that can predict the populations of local states in this ice-like system with no adjustable parameters.



rate research

Read More

107 - Yi Qi , T. Brintlinger , 2008
Recently, significant interest has emerged in fabricated systems that mimic the behavior of geometrically-frustrated materials. We present the full realization of such an artificial spin ice system on a two-dimensional kagome lattice and demonstrate rigid adherence to the local ice rule by directly counting individual pseudo-spins. The resulting spin configurations show not only local ice rules and long-range disorder, but also correlations consistent with spin ice Monte Carlo calculations. Our results suggest that dipolar corrections are significant in this system, as in pyrochlore spin ice, and they open a door to further studies of frustration in general.
We have performed a detailed study of thermal annealing of the moment configuration in artificial spin ice. Permalloy (Ni$_{80}$Fe$_{20}$) artificial spin ice samples were examined in the prototypical square ice geometry, studying annealing as a function of island thickness, island shape, and annealing temperature and duration. We also measured the Curie temperature as a function of film thickness, finding that thickness has a strong effect on the Curie temperature in regimes of relevance to many studies of the dynamics of artificial spin ice systems. Increasing the interaction energy between island moments and reducing the energy barrier to flipping the island moments allows the system to more closely approach the collective low energy state of the moments upon annealing, suggesting new channels for understanding the thermalization processes in these important model systems.
In classical and quantum frustrated magnets the interactions in combination with the lattice structure impede the spins to order in optimal configurations at zero temperature. The theoretical interest in their classical realisations has been boosted by the artificial manufacture of materials with these properties, that are of flexible design. This note summarises work on the use of vertex models to study bidimensional spin-ices samples, done in collaboration with R. A. Borzi, M. V. Ferreyra, L. Foini, G. Gonnella, S. A. Grigera, P. Guruciaga, D. Levis, A. Pelizzola and M. Tarzia, in recent years. It is an invited contribution to a J. Stat. Phys. special issue dedicated to the memory of Leo P. Kadanoff.
The search for new quantum phases, especially in frustrated magnets, is central to modern condensed matter physics. One of the most promising places to look is in rare-earth pyrochlore magnets with highly-anisotropic exchange interactions, materials closely related to the spin ices Ho2Ti2O7 and Dy2Ti2O7. Here we establish a general theory of magnetic order in these materials. We find that many of their most interesting properties can be traced back to the accidental degeneracies where phases with different symmetry meet. These include the ordered ground state selection by fluctuations in Er2Ti2O7, the dimensional-reduction observed in Yb2Ti2O7, and the absence of magnetic order in Er2Sn2O7.
The effect of boundaries and how these can be used to influence the bulk behaviour in geometrically frustrated systems are both long-standing puzzles, often relegated to secondary role. Here we use numerical simulations and proof of concept experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented open or periodic boundary conditions. We also show that strategically placing defects at the corners generates novel bistable states, or topological strings which result from competing GS regions in the bulk. Our results could be generalized to other frustrated micro and nanostructures where boundary conditions may be engineered with lithographic techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا