Often a modification of microscopic symmetry in a system can result in a dramatic change in its macroscopic properties. Here we report that symmetry breaking by a tube-threading magnetic field can drastically increase the photoluminescence quantum yield of semiconducting single-walled carbon nanotubes, by as much as a factor of six, at low temperatures. To explain this striking connection between seemingly unrelated properties, we have developed a comprehensive theoretical model based on magnetic-field-dependent one-dimensional exciton band structure and the interplay of strong Coulomb interactions and the Aharonov-Bohm effect. This conclusively explains our data as the first experimental observation of dark excitons 5-10 meV below the bright excitons in single-walled carbon nanotubes. We predict that this quantum yield increase can be made much larger in disorder-free samples.