Do you want to publish a course? Click here

Optical properties of the Ce and La di-telluride charge density wave compounds

269   0   0.0 ( 0 )
 Added by Degiorgi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The La and Ce di-tellurides LaTe$_2$ and CeTe$_2$ are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.



rate research

Read More

The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe3 indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.
We investigate the rare-earth polychalcogenide $R_2$Te$_5$ ($R$=Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related $R$Te$_n$ (n=2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice.
The intermetallic compound LaAgSb2 displays two charge-density-wave (CDW) transitions, which were detected with measurements of electrical resistivity (rho), magnetic susceptibility, and X-ray scattering; the upper transition takes place at T1 approx. 210 K, and it is accompanied by a large anomaly in rho(T), whereas the lower transition is marked by a much more subtle anomaly at T2 approx. 185 K. We studied the effect of hydrostatic pressure (P) on the formation of the upper CDW state in pure and doped La1-xRxAgSb2 (R = Ce, Nd) compounds, by means of measurements of rho(T) for P < 23 kbar. We found that the hydrostatic pressure, as well as the chemical pressure introduced by the partial substitution of the smaller Ce and Nd ions for La, result in the suppression of the CDW ground state, e.g. the reduction of the ordering temperature T1. The values of dT1/dP are approx. 2-4 times higher for the Ce-doped samples as compared to pure LaAgSb2, or even La0.75Nd0.25AgSb2 Nd-doped with a comparable T1 (P=0). This increased sensitivity to pressure may be due to increasing Ce- hybridization under pressure. The magnetic ordering temperature of the cerium-doped compounds is also reduced by pressure, and the high pressure behavior of the Ce-doped samples is dominated by Kondo impurity scattering.
197 - V. Brouet , W.L. Yang , X.J. Zhou 2008
We present a detailed ARPES investigation of the RTe3 family, which sets this system as an ideal textbook example for the formation of a nesting driven Charge Density Wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi Surface (FS) (up to 0.4eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k-space. An additional advantage of RTe3 is that the band structure can be very accurately described by a simple 2D tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure, by comparing our ARPES measurements with Linear Muffin-Tin Orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and, for the first time, of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k-space, the evolution of the CDW wave vector with R and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(Ef), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.
We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe$_2$. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا