Unified static renormalization-group treatment of finite-temperature crossovers close to a quantum critical point


Abstract in English

A nonconventional renormalization-group (RG) treatment close to and below four dimensions is used to explore, in a unified and systematic way, the low-temperature properties of a wide class of systems in the influence domain of their quantum critical point. The approach consists in a preliminary averaging over quantum degrees of freedom and a successive employment of the Wilsonian RG transformation to treat the resulting effective classical Ginzburg-Landau free energy functional. This allows us to perform a detailed study of criticality of the quantum systems under study. The emergent physics agrees, in many aspects, with the known quantum critical scenario. However, a richer structure of the phase diagram appears with additional crossovers which are not captured by the traditional RG studies. In addition, in spite of the intrinsically static nature of our theory, predictions about the dynamical critical exponent, which parametrizes the link between statics and dynamics close to a continuous phase transition, are consistently derived from our static results.

Download