Do you want to publish a course? Click here

Hard X-ray Cu $2p$ Core-Level Photoemission of High-$T_c$ Cuprate Superconductors

66   0   0.0 ( 0 )
 Added by Munetaka Taguchi Dr
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a detailed study of Cu $2p$ core-level spectra in single layer La$_{2-x}$Sr$_{x}$CuO$_{4}$, La doped Bi$_2$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$ (Bi2201) and bilayer Bi$_2$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) high-temperature superconductors by using hard x-ray photoemission (HX-PES). We identify the Cu$^{2+}$ derived (i) the Zhang-Rice singlet (ZRS) feature, (ii) the $d^{n+1}underline{L}$ (ligand screened) feature, (iii) the $d^{n}$ satellite feature, as well as the hole-doping derived high binding energy feature in the main peak. In Bi-based cuprates, intensities of the $d^{n}$ satellite features seem to be strongly enhanced compared to La$_{2-x}$Sr$_{x}$CuO$_{4}$. From x-ray photon energy dependent measurements, it is shown that the increased intensity in the satellite region is associated with Bi $4s$ core-level spectral intensity. The corrected $d^{n}$ satellite intensity is independent of the doping content or number of Cu-O layers. Our results suggest a correlation of the relative intensity of ZRS feature and hole-doping induced high binding energy spectral changes in the main peak with superconductivity.



rate research

Read More

Recent STM measurements have observed many inhomogeneous patterns of the local density of states on the surface of high-T_c cuprates. As a first step to study such disordered strong correlated systems, we use the BdG equation for the t-t-t-J model with an impurity. The impurity is taken into account by a local potential or local variation of the hopping/exchange terms. Strong correlation is treated by a Gutzwiller mean-field theory with local Gutzwiller factors and local chemical potentials. It turned out that the potential impurity scattering is greatly suppressed, while the local variation of hoppings/exchanges is enhanced.
128 - J. Zhao , U. Chatterjee , D. Ai 2013
The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly refects the pairing of electrons. In the copper-oxide high temperature superconductors (HTSCs), a strongly anisotropic energy gap, which vanishes along high symmetry directions, is a clear manifestation of the d-wave symmetry of the pairing. There is, however, a dramatic change in the form of the gap anisotropy with reduced carrier concentration (underdoping). Although the vanishing of the gap along the diagonal to the square Cu-O bond directions is robust, the doping dependence of the large gap along the Cu-O directions suggests that its origin might be different from pairing. It is thus tempting to associate the large gap with a second order parameter distinct from superconductivity. We use angle-resolved photoemission spectroscopy (ARPES) to show that the two-gap behavior, and the destruction of well defined electronic excitations, are not universal features of HTSCs, and depend sensitively on how the underdoped materials are prepared. Depending on cation substitution, underdoped samples either show two-gap behavior or not. In contrast, many other characteristics of HTSCs, such as the domelike dependence of Tc on doping, long-lived excitations along the diagonals to the Cu-O bonds, energy gap at the antinode (crossing of the underlying Fermi surface and the (pi, 0)-(pi, pi) line) decreasing monotonically with doping, while persisting above Tc (the pseudogap), are present in all samples, irrespective of whether they exhibit two-gap behavior or not. Our results imply that universal aspects of high Tc superconductivity are relatively insensitive to differences in the electronic states along the Cu-O bond directions.
114 - G. Aeppli 1998
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, T_c=35, up to 350 K) of single crystals of La_{1.86}Sr_{0.14}CuO_4. The peaks which dominate the fluctuations have amplitudes that decrease as T^{-2} and widths that increase in proportion to the thermal energy, k_B T (where k_B is Boltzmanns constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.
Extensive Cu-NMR studies on multilayered high-Tc cuprates have deduced the following results;(1) Antiferromagnetic (AFM) moment M_{AFM} is decreased with doping, regardless of the number of CuO_2 layers n, and collapses around a carrier density N_h = 0.17. (2) The AFM ordering temperature is enhanced as the out-of-plane coupling J_{out} increases with increasing n. (3) The in-plane superexchange J_{in} is invariant with doping, but is even increased. (4) The dome shape of T_c from the underdoped to the overdoped regime with a maximum T_c at N_h = 0.22 does not depend on n, but its maximum value of T_c seems to depend on n moderately. The present results strongly suggest that the AFM interaction plays the vital role as the glue for the Cooper pairs, which will lead us to a genuine understanding of why the T_c of cuprate superconductors is so high.
High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic X-ray scattering (RIXS) to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors [La2-xSrxCuO4 (LSCO) and Bi2Sr1.6La0.4CuO6+d (Bi2201)], crucially completing the picture. Interestingly, in contrast to the quasi-static charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behaviour of valence charges in hole-doped cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا