No Arabic abstract
We report on the superconducting (SC) properties of Y$_2$C$_3$ with a relatively high transition temperature $T_{rm c}=15.7$ K investigated by $^{13}$C nuclear-magnetic-resonance (NMR) measurements under a magnetic field. The $^{13}$C Knight shift has revealed a significant decrease below $T_{rm c}$, suggesting a spin-singlet superconductivity. From an analysis of the temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ in the SC state, Y$_2$C$_3$ is demonstrated to be a multigap superconductor that exhibits a large gap $2Delta/k_{rm B}T_{rm c}=5$ at the main band and a small gap $2Delta/k_{rm B}T_{rm c}=2$ at other bands. These results have revealed that Y$_2$C$_3$ is a unique multigap s-wave superconductor similar to MgB$_2$.
A complex structure of the superconducting order parameter in $Ln_2$C$_3$ ($Ln$ = La, Y) is demonstrated by muon spin relaxation ($mu$SR) measurements in their mixed state. The muon depolarization rate [$sigma_{rm v}(T)$] exhibits a characteristic temperature dependence that can be perfectly described by a phenomenological double-gap model for nodeless superconductivity. While the magnitude of two gaps is similar between La$_2$C$_3$ and Y$_2$C$_3$, a significant difference in the interband coupling between those two cases is clearly observed in the behavior of $sigma_{rm v}(T)$.
We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et al., Nature (411), 54 (2001)). We found that both the uniform spin susceptibility and the spin fluctuations show a strong enhancement with decreasing temperature, and saturate below ~50K and ~20K respectively. The nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that grows with decreasing magnetic field.
Coupling between $sigma$-bonding electrons and phonons is generally very strong. To metallize $sigma$-electrons provides a promising route to hunt for new high-T$_c$ superconductors. Based on this picture and first-principles density functional calculation with Wannier interpolation for electronic structure and lattice dynamics, we predict that trilayer film LiB$_2$C$_2$ is a good candidate to realize this kind of high-T$_c$ superconductivity. By solving the anisotropic Eliashberg equations, we find that free-standing trilayer LiB$_2$C$_2$ is a phonon-mediated superconductor with T$_c$ exceeding the liquid-nitrogen temperature at ambient pressure. The transition temperature can be further raised to 125 K by applying a biaxial tensile strain.
To verify the effect of geometrical frustration, we artificially distort the triangular lattice of quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [BEDT-TTF: bis(ethylenedithio)terathiofulvalene] by analogous-molecular substitution and apply $^{13}$C NMR of bulk and substituted sites, electric conductivity, and static magnetic susceptibility measurements. The results indicate that the magnetic characteristics of the substituted sample are quantitatively similar to those of the pure sample. Moreover the magnetic characteristics at the substituted sites are also the same as in the bulk. These results suggest that the observed magnetic properties may not be due to the geometrical frustration but the importance of disorder.
The electron paramagnetic resonance study for an organic superconductor $beta$-(BEDT-TTF)$_{4}$[(H$_3$O)Ga(C$_2$O$_4$)$_3$]$cdot$C$_6$H$_5$NO$_2$ reveals that superconductivity coexists uniformly with the charge ordered state in one material. In the charge ordered state, the interplane spin exchange is gapped, while the in-plane conductivity is not significantly modified. This anisotropic behavior is explained by the exotic charge ordered state, in which molecular-site selective carrier localization coexists with conducting carriers on other molecules. Relationship between superconductivity and this conductive charge ordered state is investigated.