Nodal domains are studied both for real $psi_R$ and imaginary part $psi_I$ of the wavefunctions of an open microwave cavity and found to show the same behavior as wavefunctions in closed billiards. In addition we investigate the variation of the number of nodal domains and the signed area correlation by changing the global phase $phi_g$ according to $psi_R+ipsi_I=e^{iphi_g}(psi_R+ipsi_I)$. This variation can be qualitatively, and the correlation quantitatively explained in terms of the phase rigidity characterising the openness of the billiard.
From the measurement of a reflection spectrum of an open microwave cavity the poles of the scattering matrix in the complex plane have been determined. The resonances have been extracted by means of the harmonic inversion method. By this it became possible to resolve the resonances in a regime where the line widths exceed the mean level spacing up to a factor of 10, a value inaccessible in experiments up to now. The obtained experimental distributions of line widths were found to be in perfect agreement with predictions from random matrix theory when wall absorption and fluctuations caused by couplings to additional channels are considered.
We study thermalization in open quantum systems using the Lindblad formalism. A method that both thermalizes and couples to Lindblad operators only at edges of the system is introduced. Our method leads to a Gibbs state of the system, satisfies fluctuation-dissipation relations, and applies both to integrable and non-integrable systems. Possible applications of the method include the study of systems coupled locally to multiple reservoirs. Our analysis also highlights the limits of applicability of the Lindblad approach to study strongly driven systems.
We consider the application of a small in-plane magnetic field to electrons on a helium surface in a perpendicular magnetic field. Certain states that were bound to the helium surface then dissolve into the continuum turning into long-lived resonances. As a result microwave absorption lines acquire an asymmetric Fano lineshape that is tunable by varying the microwave polarisation or the in-plane magnetic field. Electrons trapped in a formerly bound state will tunnel off the surface of helium; we show that under suitable circumstances this ``radioactive decay can show damped oscillations rather than a simple exponential decay. The mechanism for oscillatory exponential decay is not specific to electrons on Helium and this effect may also be relevant elsewhere in physics.
In this paper we argue that the electron skew-scattering on paramagnetic impurities in non-magnetic systems, such as bulk semiconductors, possesses a remarkable fingerprint allowing to differentiate it directly from other microscopic mechanisms of the emergent Hall response. We demonstrate theoretically that the exchange interaction between the impurity magnetic moment and mobile electrons leads to the emergence of an electric Hall current persisting even at zero electron spin polarization. We describe two microscopic mechanisms behind this effect, namely the exchange interaction assisted skew-scattering and the conversion of the SHE induced transverse spin current to the charge one owing to the difference between the spin-up and spin-down conductivities. We propose an essentially all-electric scheme based on a spin-injection ferromagnetic-semiconductor device which allows one to reveal the effect of paramagnetic impurities on the Hall phenomena via the detection of the spin polarization independent terms in the Hall voltage.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.