Langevin simulations of a model for ultrathin magnetic films


Abstract in English

We show results from simulations of the Langevin dynamics of a two-dimensional scalar model with competing interactions for ultrathin magnetic films. We find a phase transition from a high temperature disordered phase to a low temperature phase with both positional and orientational orders. Both kinds of order emerge at the same temperature, probably due to the isotropy of the model Hamiltonian. In the low temperature phase orientational correlations show long range order while positional correlations show only quasi-long-range order in a wide temperature range. The orientational correlation length and the associated susceptibility seem to diverge with power laws at the transition. While at zero temperature the system exhibits stripe long range order, as temperature grows we observe the proliferation of different kinds of topological defects that ultimately drive the system to the disordered phase. The magnetic structures observed are similar to experimental results on ultrathin ferromagnetic films.

Download