Capillary Filling of Anodized Alumina Nanopore Arrays


Abstract in English

The filling behavior of a room temperature solvent, perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes was investigated in situ with small angle x-ray scattering. Adsorption in the pores was controlled reversibly by varying the chemical potential between the sample and a liquid reservoir via a thermal offset, $Delta$T. The system exhibited a pronounced hysteretic capillary filling transition as liquid was condensed into the nanopores. These results are compared with Kelvin-Cohan theory, with a modified Derjaguin approximation, as well as with predictions by Cole and Saam.

Download