Do you want to publish a course? Click here

Magnetic-dipole induced appearance of vortices in a bilayered superconductor/soft-magnet heterostructure

98   0   0.0 ( 0 )
 Added by Sergey Yampolskii
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The penetration of the magnetic field of an infinitesimal magnetic dipole into a bilayered type-II superconductor/soft-magnet heterostructure is studied on the basis of the classical London approach. The critical values of the dipole moment for the first appearance of a single magnetic vortex and, respectively, a magnetic vortex-antivortex pair in the superconductor constituent are obtained, when the magnetic dipole faces the superconductor or the soft-magnet constituent. This reveals that the soft-magnet constituent inhibits penetration of vortices into the superconductor constituent, when the dipole faces the soft-magnet constituent.



rate research

Read More

We study the penetration of the nonuniform magnetic field, created by a magnetic dipole with out-of-plane magnetization, into a film heterostructure composed of a type-II superconductor layer and a soft-magnet layer. In the framework of the London approach, the energy of the magnetic dipole-vortex interaction is derived and the critical value of the dipole moment for the first appearance of a vortex in the superconducting constituent is found for two cases of the layer ordering, namely when the dipole is located near the superconducting or, respectively, the magnetic constituent.
The magnetization of a planar heterostructure of periodically alternating type-II superconductor and soft-magnet strips exposed to a transverse external magnetic field is studied. An integral equation governing the sheet current distribution in the Meissner state of the superconductor constituents is derived. The field of complete penetration of magnetic flux in the critical state of the superconductor constituents is calculated for different widths of the superconductor and the soft-magnet constituents and a range of values of the relative permeability of the soft-magnet constituents.
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnetization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.
A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in $beta$-Bi$_2$Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.
We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا