Do you want to publish a course? Click here

Metastable diamagnetism in Sm0.1Ca0.84Sr0.06MnO3 manganite

154   0   0.0 ( 0 )
 Added by Vladimir Markovich
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic properties of polycrystalline Sm0.1Ca0.84Sr0.06MnO3 in pristine and metastable states have been investigated in wide range of temperatures and magnetic fields. It was found that below Curie temperature TC = 105 K the pristine state exhibits phase separation comprising ferromagnetic and antiferromagnetic phases. The metastable states with reduced magnetization were obtained by successive number of quick coolings of the sample placed in container with kerosene-oil mixture. By an increasing number of quick coolings (> 6) the long time relaxation appeared at 10 K and the magnetization reversed its sign and became strongly negative in wide temperature range, even under an applied magnetic field of 15 kOe. The observed field and temperature dependences of the magnetization in this state are reversed in comparison with the ordinary ferromagnetic ones. Above TC, the observed diamagnetic susceptibility of the reversed magnetization state at T = 120 K is ~ - 0.9 x 10-4 emu g-1 Oe-1. Only after some storage time at room temperature, the abnormal magnetic state is erasable. It is suggested that the negative magnetization observed results from a specific coupling of the nano/micro-size ferromagnetic regions with a surrounding diamagnetic matrix formed, in a puzzled way, by the repeating training (quick cooling) cycles.



rate research

Read More

A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.
Deterministic oscillations of current-induced metastable resistivity in changing voltage have been detected in La$_{0.82}$Ca$_{0.18}$MnO$_3$ single crystals. At low temperatures, below the Curie point, application of specific bias procedures switches the crystal into metastable resistivity state characterized by appearance of pronounced reproducible and random structures in the voltage dependence of the differential conductivity. In certain bias range equally spaced broad conductivity peaks have been observed. The oscillating conductivity has been tentatively ascribed to resonances in a quantum well within the double tunnel barrier of intrinsic weak-links associated with twin-like defect boundaries.
119 - J. Salafranca , M.J. Calderon , 2007
We study the magnetic and transport properties of all-manganite heterostructures consisting of ferromagnetic metallic electrodes separated by an antiferromagnetic barrier. We find that the magnetic ordering in the barrier is influenced by the relative orientation of the electrodes magnetization producing a large difference in resistance between the parallel and antiparallel orientations of the ferromagnetic layers. The external application of a magnetic field in a parallel configuration also leads to large magnetoresistance.
We find anomalously large diamagnetic responses in the cage compounds AV2Al20 where A = Y and La, not A = Al0.3, Sc0.4, and Lu, despite the apparent similarities in crystal and electronic structures among these compounds. The magnetic susceptibilities of the Y and La compounds become -1.94 and -7.44 x 10-4 cm3 mol-1 at 10 K, respectively, the latter of which corresponds to approximately one-quarter of that of bismuth, a well-known diamagnetic material, in terms of unit volume. The origin is not clear but may be related to a specific evolution in the band structure, as the diamagnetic response increases with increasing lattice constant.
The behavior of the low-frequency electromagnon in multiferroic DyMnO3 has been investigated in external magnetic fields and in a magnetically ordered state. Significant softening of the electromagnon frequency is observed for external magnetic fields parallel to the a-axis (BIIa), revealing a number of similarities to a classical soft mode behavior known for ferroelectric phase transitions. The softening of the electromagnon yields an increase of the static dielectric permittivity which follows a similar dependence as predicted by the Lyddane-Sachs-Teller relation. Within the geometry BIIb the increase of the electromagnon intensity does not correspond to the softening of the eigenfrequency. In this case the increase of the static dielectric permittivity seem to be governed by the motion of the domain walls.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا