Do you want to publish a course? Click here

Influence of thermal coupling on spin avalanches in Mn12-acetate

173   0   0.0 ( 0 )
 Added by Carol Webster
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of thermal coupling on spin avalanches in Mn12-acetate has been probed using a single crystal assembly. Time-resolved, synchronized measurements of magnetization and temperature are reported. Unusually low avalanche trigger fields occur when thermal coupling to the bath is weak. A temperature rise observed at zero magnetic field is attributed to a change in magnetostatic energy.

rate research

Read More

Using micron-sized thermometers and Hall bars, we report time-resolved studies of the local temperature and local magnetization for two types of magnetic avalanches (abrupt spin reversals) in the molecular magneti Mn12-acetate, corresponding to avalanches of the main slow-relaxing crystalline form and avalanches of the fast-relaxing minor species that exists in all as-grown crystals of this material. An experimental protocol is used that allows the study of each type of avalanche without triggering avalanches in the other, and of both types of avalanches simultaneously. In samples prepared magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches. magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches.
Crystals of the molecular magnet Mn12-acetate are known to contain a small fraction of low- symmetry (minor) species with a small anisotropy barrier against spin reversal. The lower barrier leads to faster magnetic relaxation and lower coercive field. We exploit the low coercive fields of the minor species to make a direct determination of the dipole field in Mn12-ac. We find that the dipolar field of a fully magnetized crystal is 51.5 pm 8.5 mT, consistent with theoretical expectations.
Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly two orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.
94 - S. McHugh , Bo Wen , Xiang Ma 2009
Using micron-sized Hall sensor arrays to obtain time-resolved measurements of the local magnetization, we report a systematic study in the molecular magnet Mn$_{12}$-acetate of magnetic avalanches controllably triggered in different fixed external magnetic fields and for different values of the initial magnetization. The speeds of propagation of the spin-reversal fronts are in good overall agreement with the theory of magnetic deflagration of Garanin and Chudnovsky cite{Garanin}.
For the first time, the morphology and dynamics of spin avalanches in Mn12-Acetate crystals using magneto-optical imaging has been explored. We observe an inhomogeneous relaxation of the magnetization, the spins reversing first at one edge of the crystal and a few milliseconds later at the other end. Our data fit well with the theory of magnetic deflagration, demonstrating that very slow deflagration rates can be obtained, which makes new types of experiments possible.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا