The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of sideways motions, which cross the barriers imposed by the lattice. Using the Density Matrix Method as a solver of the Master Equation, the renewal time and the diffusion coefficient are calculated as a function of the strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover scaling exponents are calculated.