Do you want to publish a course? Click here

Ultracold heteronuclear molecules in a 3D optical lattice

149   0   0.0 ( 0 )
 Added by Christian Ospelkaus
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the creation of ultracold heteronuclear molecules assembled from fermionic 40K and bosonic 87Rb atoms in a 3D optical lattice. Molecules are produced at a heteronuclear Feshbach resonance both on the attractive and the repulsive side of the resonance. We precisely determine the binding energy of the heteronuclear molecules from rf spectroscopy across the Feshbach resonance. We characterize the lifetime of the molecular sample as a function of magnetic field and measure between 20 and 120ms. The efficiency of molecule creation via rf association is measured and is found to decrease as expected for more deeply bound molecules.



rate research

Read More

We report on the first creation of ultracold bosonic heteronuclear molecules of two fermionic species, 6Li and 40K, by a magnetic field sweep across an interspecies s-wave Feshbach resonance. This allows us to associate up to 4x10^4 molecules with high efficiencies of up to 50%. Using direct imaging of the molecules, we measure increased lifetimes of the molecules close to resonance of more than 100 ms in the molecule-atom mixture stored in a harmonic trap.
We report on the creation and characterization of heteronuclear KRb Feshbach molecules in an optical dipole trap. Starting from an ultracold gas mixture of K-40 and Rb-87 atoms, we create as many as 25,000 molecules at 300 nK by rf association. Optimizing the association process, we achieve a conversion efficiency of 25%. We measure the temperature dependence of the rf association process and find good agreement with a phenomenological model that has previously been applied to Feshbach molecule creation by slow magnetic-field sweeps. We also present a measurement of the binding energy of the heteronuclear molecules in the vicinity of the Feshbach resonance and provide evidence for Feshbach molecules as deeply bound as 26 MHz.
We study Bragg spectroscopy of ultra-cold atoms in one-dimensional optical lattices as a method for probing the excitation spectrum in the Mott insulator phase, in particular the one particle-hole excitation band. Within the framework of perturbation theory we obtain an analytical expression for the dynamic structure factor $S(q,omega)$ and use it to calculate the imparted energy which has shown to be a relevant observable in recent experiments. We test the accuracy of our approximations by comparing them with numerically exact solutions of the Bose-Hubbard model in restricted cases and establish the limits of validity of our linear response analysis. Finally we show that when the system is deep in the Mott insulator regime, its response to the Bragg perturbation is temperature dependent. We suggest that this dependence might be used as a tool to probe temperatures of order of the Mott gap.
328 - S. Ospelkaus , A. Peer , K.-K. Ni 2008
Recently, the quest for an ultracold and dense ensemble of polar molecules has attracted strong interest. Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions, for quantum information science, and for precision measurements. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. Starting from an ultracold dense gas of heteronuclear 40K-87Rb Feshbach molecules with typical binding energies of a few hundred kHz and a negligible dipole moment, we coherently transfer these molecules into a vibrational level of the ground-state molecular potential bound by >10 GHz. We thereby increase the binding energy and the expected dipole moment of the 40K-87Rb molecules by more than four orders of magnitude in a single transfer step. Starting with a single initial state prepared with Feshbach association, we achieve a transfer efficiency of 84%. While dipolar effects are not yet observable, the presented technique can be extended to access much more deeply bound vibrational levels and ultimately those exhibiting a significant dipole moment. The preparation of an ultracold quantum gas of polar molecules might therefore come within experimental reach.
We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular we study the dependence of this transition on the fermionic 40K impurity concentration by a comparison to the corresponding superfluid to Mott insulator transition in a pure bosonic 87Rb gas and find a significant shift in the transition parameter. The observed shift is larger than expected based on a mean-field argument, which is a strong indication that disorder-related effects play a significant role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا