Electronic Instabilities in Shape-Memory Alloys


Abstract in English

Using a variety of thermodynamic measurements made in magnetic fields, we show evidence that the diffusionless transition (DT) in many shape-memory alloys is related to significant changes in the electronic structure. We investigate three alloys that show the shape-memory effect (In-24 at.% Tl, AuZn, and U-26 at.% Nb). We observe that the DT is significantly altered in these alloys by the application of a magnetic field. Specifically, the DT in InTl-24 at.% shows a decrease in the DT temperature with increasing magnetic field. Further investigations of AuZn were performed using an ultrasonic pulse-echo technique in magnetic fields up to 45 T. Quantum oscillations in the speed of the longitudinal sound waves propagating in the [110] direction indicated a strong acoustic de Haas-van Alphen-type effect and give information about part of the Fermi surface.

Download