Do you want to publish a course? Click here

Electronic Instabilities in Shape-Memory Alloys

85   0   0.0 ( 0 )
 Added by Bogdan Mihaila
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a variety of thermodynamic measurements made in magnetic fields, we show evidence that the diffusionless transition (DT) in many shape-memory alloys is related to significant changes in the electronic structure. We investigate three alloys that show the shape-memory effect (In-24 at.% Tl, AuZn, and U-26 at.% Nb). We observe that the DT is significantly altered in these alloys by the application of a magnetic field. Specifically, the DT in InTl-24 at.% shows a decrease in the DT temperature with increasing magnetic field. Further investigations of AuZn were performed using an ultrasonic pulse-echo technique in magnetic fields up to 45 T. Quantum oscillations in the speed of the longitudinal sound waves propagating in the [110] direction indicated a strong acoustic de Haas-van Alphen-type effect and give information about part of the Fermi surface.



rate research

Read More

We study the branching of twins appearing in shape memory alloys at the interface between austenite and martensite. In the framework of three-dimensional non-linear elasticity theory, we propose an explicit, low-energy construction of the branched microstructure, generally applicable to any shape memory material without restrictions on the symmetry class of martensite or on the geometric parameters of the interface. We show that the suggested construction follows the expected energy scaling law, i.e., that (for the surface energy of the twins being sufficiently small) the branching leads to energy reduction. Furthermore, the construction can be modified to capture different features of experimentally observed microstructures without violating this scaling law. By using a numerical procedure, we demonstrate that the proposed construction is able to predict realistically the twin width and the number of branching generations in a Cu-Al-Ni single crystal.
169 - Thilo Simon 2017
We analyze generic sequences for which the geometrically linear energy [E_eta(u,chi):= eta^{-frac{2}{3}}int_{B_{0}(1)} left| e(u)- sum_{i=1}^3 chi_ie_iright|^2 d x+eta^frac{1}{3} sum_{i=1}^3 |Dchi_i|(B_{0}(1))] remains bounded in the limit $eta to 0$. Here $ e(u) :=1/2(Du + Du^T)$ is the (linearized) strain of the displacement $u$, the strains $e_i$ correspond to the martensite strains of a shape memory alloy undergoing cubic-to-tetragonal transformations and $chi_i:B_{0}(1) to {0,1}$ is the partition into phases. In this regime it is known that in addition to simple laminates also branched structures are possible, which if austenite was present would enable the alloy to form habit planes. In an ansatz-free manner we prove that the alignment of macroscopic interfaces between martensite twins is as predicted by well-known rank-one conditions. Our proof proceeds via the non-convex, non-discrete-valued differential inclusion [e(u) in bigcup_{1leq i eq jleq 3} operatorname{conv} {e_i,e_j}] satisfied by the weak limits of bounded energy sequences and of which we classify all solutions. In particular, there exist no convex integration solutions of the inclusion with complicated geometric structures.
The magnetic field affects the motion of electrons and the orientation of spins in solids, but it is believed to have little impact on the crystal structure. This common perception has been challenged recently by ferromagnetic shape-memory alloys, where the spin-lattice coupling is so strong that crystallographic axes even in a fixed sample are forced to rotate, following the direction of moments. One would, however, least expect any structural change to be induced in antiferromagnets where spins are antiparallel and give no net moment. Here we report on such unexpected magnetic shape-memory effects that take place ironically in one of the best-studied 2D antiferromagnets, La2-xSrxCuO4 (LSCO). We find that lightly-doped LSCO crystals tend to align their b axis along the magnetic field, and if the crystal orientation is fixed, this alignment occurs through the generation and motion of crystallographic twin boundaries. Both resistivity and magnetic susceptibility exhibit curious switching and memory effects induced by the crystal-axes rotation; moreover, clear kinks moving over the crystal surfaces allow one to watch the crystal rearrangement directly with a microscope or even bare eyes.
131 - S. Chatterjee , S. Giri , S. K. De 2008
The ground state properties of the ferromagnetic shape memory alloy of nominal composition Ni2Mn1.36Sn0.64 have been studied by dc magnetization and ac susceptibility measurements. Like few other Ni-Mn based alloys, this sample exhibits exchange bias phenomenon. The observed exchange bias pinning was found to originate right from the temperature where a step-like anomaly is present in the zero-field-cooled magnetization data. The ac susceptibility study indicates the onset of spin glass freezing near this step-like anomaly with clear frequency shift. The sample can be identified as a reentrant spin glass with both ferromagnetic and glassy phases coexisting together at low temperature at least in the field-cooled state. The result provides us an comprehensive view to identify the magnetic character of various Ni-Mn-based shape memory alloys with competing magnetic interactions.
We have studied the effect of Fe addition on the structural and magnetic transitions in the magnetic shape memory alloy Ni-Mn-Ga by substituting systematically each atomic species by Fe. Calorimetric and AC susceptibility measurements have been carried out in order to study the magnetic and structural transformation properties. We find that the addition of Fe modifies the structural and magnetic transformation temperatures. Magnetic transition temperatures are displaced to higher values when Fe is substituted into Ni-Mn-Ga, while martensitic and premartensitic transformation temperatures shift to lower values. Moreover, it has been found that the electron per atom concentration essentially governs the phase stability in the quaternary system. However, the observed scaling of transition temperatures with $e/a$ differs from that reported in the related ternary system Ni-Mn-Ga.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا