Do you want to publish a course? Click here

Analysis of the Scanning Tunneling Microscopy Images of the Charge Density Wave Phase in Quasi-one-dimensional Rb0.3MoO3

67   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The experimental STM images for the CDW phase of the blue bronze RbMoO3 have been successfully explained on the basis of first-principles DFT calculations. Although the density of states near the Fermi level strongly concentrates in two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly probes the contribution of the uppermost O atoms of the surface, associated with the Mo-IO6 octahedra. In addition, it is found that the surface concentration of Rb atoms plays a key role in determining the surface nesting vector and hence the periodicity of the CDW modulation. Significant experimental inhomogeneities of the b* surface component of the wavevector of the modulation, probed by STM, are reported. The calculated changes in the surface nesting vector are consistent with the observed experimental inhomogeneities.



rate research

Read More

119 - A. Tomic , Zs. Rak , J. P. Veazey 2008
We have studied the nature of the surface charge distribution in CeTe3. This is a simple, cleavable, layered material with a robust one-dimensional incommensurate charge density wave (CDW). Scanning tunneling microscopy (STM) has been applied on the exposed surface of a cleaved single crystal. At 77 K, the STM images show both the atomic lattice of surface Te atoms arranged in a square net and the CDW modulations oriented at 45 degrees with respect to the Te net. Fourier transform of the STM data shows Te square lattice peaks, and peaks related to the CDW oriented at 45 degrees to the lattice peaks. In addition, clear peaks are present, consistent with subsurface structure and wave vector mixing effects. These data are supported by electronic structure calculations, which show that the subsurface signal most likely arises from a lattice of Ce atoms situated 2.53 angstroms below the surface Te net.
One of the main challenges in understanding high TC superconductivity is to disentangle the rich variety of states of matter that may coexist, cooperate, or compete with d-wave superconductivity. At center stage is the pseudogap phase, which occupies a large portion of the cuprate phase diagram surrounding the superconducting dome [1]. Using scanning tunneling microscopy, we find that a static, non-dispersive, checkerboard-like electronic modulation exists in a broad regime of the cuprate phase diagram and exhibits strong doping dependence. The continuous increase of checkerboard periodicity with hole density strongly suggests that the checkerboard originates from charge density wave formation in the anti-nodal region of the cuprate Fermi surface. These results reveal a coherent picture for static electronic orderings in the cuprates and shed important new light on the nature of the pseudogap phase.
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here we report our results of magnetoresistance (MR) on Ta2NiSe7. A breakdown of the Kohlers rule is found upon entering the CDW state. Concomitantly, a clear change of curvature in the field dependence of MR is observed. We show that the curvature change is well described by two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the $p$ orbitals from Se atoms dominate the change in transport through the CDW transition.
We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW.
A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا