Dynamical spin chirality and spin anisotropy in gapped S=1/2 quantum systems


Abstract in English

We have studied the spin anisotropy in spin-singlet ground state compounds and the magnetic chirality, as measured by inelastic polarized neutron scattering techniques, in the chain-sublattice of Sr14Cu24O41. In-plane and out of plane magnetic fluctuations are measured to be anisotropic and further discussed in the light of the current hypothesis of spin-orbit coupling. We show that under appropriate conditions of magnetic field and neutron polarization, the textit{trivial} magnetic chirality selects only one of the Zeeman splitted triplet states for scattering and erases the other one that posses opposite helicity. Our analysis pertains to previous studies on dynamical magnetic chirality and chiral critical exponents, where the ground state is chiral itself, the so-called textit{non-trivial} dynamical magnetic chirality. As it turns out, both textit{trivial} and textit{non-trivial} dynamical magnetic chirality have identical selection rules for inelastic polarized neutron scattering experiments and it is not at all evident that they can be distinguished in a paramagnetic compound.

Download