We have realized an AlAs two-dimensional electron system in which electrons occupy conduction-band valleys with different Fermi contours and effective masses. In the quantum Hall regime, we observe both resistivity spikes and persistent gaps at crossings between the Landau levels originating from these two valleys. From the positions of the spikes in tilted magnetic field and measurements of the energy gaps away from the crossings, we find that, after occupation of the minority valley, the spin susceptibility drops rapidly, and the electrons possess a {it single} interaction-enhanced g-factor, despite the dissimilarity of the two occupied valleys.