No Arabic abstract
The Jahn-Teller distortive transition of lmo is described by a modified 3-state Potts model. The interactions between the three possible orbits depends both on the orbits and their relative orientation on the lattice. Values of the two exchange parameters which are chosen to give the correct low temperature phase and the correct value for the transition temperature are shown to be consistent with microscopy theory. The model predicts a first order transitions and also a value for the entropy above the transition in good agreement with experiment. The theory with the same parameters also predicts the temperature dependence of the order parameter of orbital ordering agreeing well with published experimental results. Finally, the type of the transition is shown to be close to one of the most disordered phases of the generalised Potts model. The short range order found experimentally above the transition is investigated by this model.
Artificially fabricated 3$d$/5$d$ superlattices (SLs) involve both strong electron correlation and spin-orbit coupling in one material by means of interfacial 3$d$-5$d$ coupling, whose mechanism remains mostly unexplored. In this work we investigated the mechanism of interfacial coupling in LaMnO$_3$/SrIrO$_3$ SLs by several spectroscopic approaches. Hard x-ray absorption, magnetic circular dichroism and photoemission spectra evidence the systematic change of the Ir ferromagnetism and the electronic structure with the change of the SL repetition period. First-principles calculations further reveal the mechanism of the SL-period dependence of the interfacial electronic structure and the local properties of the Ir moments, confirming that the formation of Ir-Mn molecular orbital is responsible for the interfacial coupling effects. The SL-period dependence of the ratio between spin and orbital components of the Ir magnetic moments can be attributed to the realignment of electron spin during the formation of the interfacial molecular orbital. Our results clarify the nature of interfacial coupling in this prototypical 3$d$/5$d$ SL system and the conclusion will shed light on the study of other strongly correlated and spin-orbit coupled oxide hetero-interfaces.
We study the famous example of weakly first order phase transitions in the 1+1D quantum Q-state Potts model at Q>4. We numerically show that these weakly first order transitions have approximately conformal invariance. Specifically, we find entanglement entropy on considerably large system sizes fits perfectly with the universal scaling law of this quantity in the conformal field theories (CFTs). This supports that the weakly first order transitions is proximate to complex fixed points, which are described by recent conjectured complex CFTs. Moreover, the central charge extracted from this fitting is close to the real part of the complex central charge of these complex CFTs. We also study the conformal towers and the drifting behaviors of these conformal data (e.g., central charge and scaling dimensions).
We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models. In this work we investigate the transition between a $mathbb{Z}_3$ ferromagnet and a phase with valence bond solid (VBS) order in a spin chain with $mathbb{Z}_3timesmathbb{Z}_3$ global symmetry. We study a model with alternating projective representations on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition from the VBS phase to a $mathbb{Z}_3$ ferromagnet. Finite-entanglement scaling data are consistent with a second-order or weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results for this model, we propose that the transition is extremely weakly first order, and is part of a family of DQCP described by walking of renormalization group flows.
We review the exact results on the various critical regimes of the antiferromagnetic $Q$-state Potts model. We focus on the Bethe Ansatz approach for generic $Q$, and describe in each case the effective degrees of freedom appearing in the continuum limit.
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ u=1$, saturating a modified version of the Harris-Luck criterion.