We investigate bright and dark solitons with anomalous or normal dispersion and under transverse harmonic confinement. In matter waves, positive atomic mass implies anomalous dispersion (kinetic spreading) while negative mass gives normal dispersion (kinetic shrinking). We find that, contrary to the strictly one-dimensional case, the axial and transverse profiles of these solitons crucially depend on the strength of the nonlinearity and on their dispersive properties. In particular, we show that, like bright solitons with anomalous dispersion, also dark solitons with normal dispersion disappear at a critical axial density. Our predictions are useful for the study of atomic matter waves in Bose-Einstein condensates and also for optical bullets in inhomogeneous Kerr media.