No Arabic abstract
We calculate the excitation spectrum and spectral weights of the alternating antiferromagnetic-ferromagnetic spin-half Heisenberg chain with exchange couplings $J$ and $-|lambda|J$ as a power series in $lambda$. For small $|lambda|$, the gapped one-particle spectrum has a maximum at $k=0$ and there is a rich structure of bound (and anti-bound) states below (and above) the 2-particle continuum. As $|lambda|$ is increased past unity the spectrum crosses over to the Haldane regime, where the peak shifts away from $k=0$, the one particle states merge with the bottom of the continuum near $k=0$, and the spectral weights associated with the one-particle states become very small. Extrapolation of the spectrum to large $|lambda|$ confirms that the ground state energy and excitation gap map onto those of the spin-one chain.
Dynamics of S=1 antiferromagnetic bond-alternating chains in the dimer phase, in the vicinity of the critical point with the Haldane phase, is studied by a field theoretical method. This model is considered to represent the compound Ni(C$_9$H$_{24}$N$_4$)(NO$_2$)ClO$_4$ (abbreviated as NTENP). We construct the sine-Gordon (SG) field theory as a low-energy effective model of this system, starting from a Tomonaga-Luttinger liquid at the critical point. Using the exact solution of the SG theory, we give a field theoretical picture of the low-energy excitation spectrum of NTENP. Results derived from our picture are in a good agreement with results of inelastic neutron scattering experiments on NTENP and numerical calculation of the dynamical structure factor. Furthermore, on the basis of the obtained theoretical picture, we predict that the sharp peaks correspond to a single elementary excitation are absent in the Raman scattering spectrum of NTENP in contrast to the inelastic neutron scattering spectrum.
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as well. In particular, we observe spinon confinement due to a next-nearest neighbor interaction in the SU(4) representation 10 spin chain.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.
In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations and Random Phase Approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu2(OH)3Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic Spin-1/2 chains with weak inter-chain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles, magnons and spinons.
Inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 have been performed under magnetic fields below and above a critical field Hc at which the energy gap closes. Normal field dependece of Zeeman splitting of the excited triplet modes below Hc has been observed, but the highest mode is unusually small and smears out with increasing field. This can be explained by an interaction with a low-lying two magnon continuum at q=pi that is present in dimerized chains but absent in uniform ones. Above Hc, we find only one excited mode, in stark contrast with three massive excitations previously observed in the structurally similar Haldane-gap material NDMAP [A. Zheludev et al., Phys. Rev. B 68, 134438 (2003)].