Do you want to publish a course? Click here

Influence of the microstructure on the magnetism of Co-doped ZnO thin films

102   0   0.0 ( 0 )
 Added by W. Prellier
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The prediction of ferromagnetism at room temperature in Co-ZnO thin films has generated a large interest in the community due to the possible applications. However, the results are controversial, going from ferromagnetism to non-ferromagnetism, leading to a large debate about its origin (secondary phase, Co clusters or not). By carefully studying the micro-structure of various Co-ZnO films, we show that the Co2+ partly substitutes the ZnO wurtzite matrix without forming Co clusters. Surprisingly, the ferromagnetism nature of the films disappears as the Co content increases. In addition, our results suggest that the observed ferromagnetism is likely associated to a large amount of defects- close to the interface and strongly depending on the growth temperature- which may explained the spreading of the results.



rate research

Read More

Two-dimensional dilute magnetic semiconductors can provide fundamental insights in the very nature of magnetic orders and their manipulation through electron and hole doping. Despite the fundamental physics, due to the large charge density control capability in these materials, they can be extremely important in spintronics applications such as spin valve and spin-based transistors. In this article, we studied a two-dimensional dilute magnetic semiconductors consisting of phosphorene monolayer doped with cobalt atoms in substitutional and interstitial defects. We show that these defects can be stabilized and are electrically active. Furthermore, by including holes or electrons by a potential gate, the exchange interaction and magnetic order can be engineered, and may even induce a ferromagnetic-to-antiferromagnetic phase transition in p-doped phosphorene.
In this work, we studied amorphous carbon ($a$-C) thin films deposited using direct current (dc) and high power impulse magnetron sputtering (HiPIMS) techniques. The microstructure and electronic properties reveal subtle differences in $a$-C thin films deposited by two techniques. While, films deposited with dcMS have a smooth texture typically found in $a$-C thin films, those deposited with HiPIMS consist of dense hillocks surrounded by a porous microstructure. The density of $a$-C thin films is a decisive parameter to judge their quality. Often, x-ray reflectivity (XRR) has been used to measure the density of carbon thin films. From the present work, we find that determination of density of carbon thin films, specially those with a thickness of few tens of nm, may not be accurate with XRR due to a poor scattering contrast between the film and substrate. By utilizing neutron reflectivity (NR) in the time of flight mode, a technique not commonly used for carbon thin films, we could accurately measure differences in the densities of $a$-C thin films deposited using dcMS and HiPIMS.
Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO mixture is presented. The extent to which this explains the MCD spectra taken on the films is discussed.
457 - A. Muller 2009
Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.
201 - H. Bea , M. Bibes , A. Barthelemy 2005
We have explored the influence of deposition pressure and temperature on the growth of BiFeO3 thin films by pulsed laser deposition onto (001)-oriented SrTiO3 substrates. Single-phase BiFeO3 films are obtained in a region close to 10-2 mbar and 580C. In non-optimal conditions, X-ray diffraction reveals the presence of Fe oxides or of Bi2O3. We address the influence of these parasitic phases on the magnetic and electrical properties of the films and show that films with Fe2O3 systematically exhibit a ferromagnetic behaviour, while single-phase films have a low bulk-like magnetic moment. Conductive-tip atomic force microscopy mappings also indicate that Bi2O3 conductive outgrowths create shortcuts through the BiFeO3 films, thus preventing their practical use as ferroelectric elements in functional heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا